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Nematicity in quantum Hall systems has been experimentally well established at excited Landau
levels. The mechanism of the symmetry breaking, however, is still unknown. Pomeranchuk instability
of Fermi liquid parameter F` ≤ −1 in the angular momentum ` = 2 channel has been argued to be
the relevant mechanism, yet there are no definitive theoretical proofs. Here we calculate, using the
variational Monte Carlo technique, Fermi liquid parameters F` of the composite fermion Fermi liquid
with a finite layer width. We consider F` in different Landau levels n = 0,1,2 as a function of layer
width parameter η. We find that unlike the lowest Landau level, which shows no sign of Pomeranchuk
instability, higher Landau levels show nematic instability below critical values of η. Furthermore the
critical value ηc is higher for the n = 2 Landau level, which is consistent with observation of nematic
order in ambient conditions only in the n = 2 Landau levels. The picture emerging from our work is that
approaching the true 2D limit brings half-filled higher Landau level systems to the brink of nematic
Pomeranchuk instability.

The electronic nematic order, first conjectured in the
context of doped Mott insulators[1], has become a common
electronic phase in the field of strongly correlated quan-
tum matter as more of these systems are found to exhibit
the nematic order. Electronic nematic ordering refers to
a spontaneous breaking of spatial rotational symmetry
while preserving translational symmetry. Nematic or-
dered systems exhibit preferential direction and ordering
is often detected through anisotropy in longitudinal trans-
port [2]. The systems that exhibit nematic order now in-
clude underdoped cuprates, Sr3Ru2O7, half-filled higher
Landau level states[2], Fe-based superconductors[3], and
even the surface of bismuth[4].On the one hand, such
ubiquity implies that the electronic nematic order fits into
an over-arching classification of how strongly correlated
electrons organize themselves. In particular, the ubiq-
uity underscores the original rationale for electronic liq-
uid crystal phases based on the observation of frustration
between kinetic energy and interaction energy and also,
by analogy, to the classical liquid crystalline systems. On
the other hand, this ubiquity motivates one to seek a mi-
croscopic mechanism of just how the analogy is realized.

Although the original picture of a nematic order form-
ing through quantum-melting[1] (or impurity driven
inhibition[5]) of a stripe order is intuitively appealing,
it has been difficult to make theoretical progress from
this perspective (beyond phenomenology). Instead, much
progress in understanding the implications of nematic or-
der relied on the notion of Pomeranchuk instability [6].
Pomeranchuk pointed out that when a Fermi liquid pa-
rameter F` in the angular momentum ` channel for spin-
polarized systems is less than -1, the Landau Fermi liquid
is unstable against deformation of the Fermi surface in
that channel. Should microscopic interactions amount to
F2 < −1, an isotropic Fermi liquid state would give way
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FIG. 1. (a) Deformation of the Fermi surface in the angular mo-
mentum ` = 2 (nematic) channel. (b) Filled Fermi sea of com-
posite fermions and a quasiparticle-quasihole pair configuration
with the lowest energy marked in red. 7 other configurations
with the quasihole momentum and the same kinetic energy are
marked in green.

to a nematic state with an elliptically deformed Fermi
surface[Fig. 1(a)]. Unfortunately it is rather challenging
to calculate Fermi liquid parameters from a microscopic
Hamiltonian in strongly correlated systems. Hence past
studies put in the the value of F2 = −1 “by hand” as a
guarantee for the nematic ground state[7–11].

Here we turn to the half-filled Landau levels (HFLLs)
where nematic order may border a non-Abelian quan-
tum Hall state. Although the lowest Landau level re-
mains featureless and gapless, at ν= 5/2 (the n=1 Landau
level) a two-dimensional electron fluid under magnetic
field shows a quantum Hall (QH) plateau that is widely
believed to be associated with the non-Abelian Moore-
Read (MR) QH state[12]. Interestingly, application of an
in-plane magnetic field [13–19] or anisotropic strain [20]
closes the gap, leaving the system in an anisotropic fluid
state. Surprisingly,a recent experiment showed that even
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isotropic pressure can drive the ν = 5/2 QH state into a
gapless state with anisotropic transport[21, 22]. More-
over at fillings ν = 9/2 and higher, gapless anisotropic
transport [23–25] has been interpreted as evidence of
electronic nematic order[26, 27].

The observation of nematic phenomena motivated vari-
ational studies comparing energies of candidate states us-
ing the Hartree-Fock (HF) [28, 29] or variational Monte
Carlo[30], as well as exact diagonalization studies[31, 32].
The Hartree-Fock calculations[28, 29] found the single-
Slater determinant states with charge density wave
(CDW) order to have lower energies than the Laugh-
lin type liquid states for n ≥ 2. But then Doan and
Manousakis [30] showed that anisotropically deformed
composite fermion (CF) unprojected wavefunctions rep-
resenting a nematic state have even lower energies for
n = 2, when the critical value of the layer “thickness pa-
rameter” η is below a critical value. Exact diagonaliza-
tion studies in Refs. [31, 32] showed that a ground state
of up to 12 electrons in half-filled systems at n ≥ 2 yield
static structure factors that are strongly peaked at a fi-
nite wave vector that decreases with increasing N; such a
gapless state gives way to the MR paired state[12] with
infinitesimal additional pseudopotentials V1 and V3 for
n = 1. Alternatively, there were efforts to investigate the
implications of nematic quantum criticality using quan-
tum field theory[33, 34]. Nevertheless, it has been un-
clear whether a simple screened Coulomb interaction po-
tential can in fact drive Pomeranchuk instability sponta-
neously and whether higher Landau levels are suscepti-
ble to such an instability. Here we use a well established
many-body wave function for the CF Fermi liquid at half-
filled Landau level to numerically evaluate Fermi liquid
parameters Fl for the lowest three half-filled Landau lev-
els (n = 0,1,2) using energy differences between various
particle-hole pair excitation configurations [see Fig.1 (b)].
Thereby we test the Pomeranchuk instability scenario for
CFs under screened Coulomb interaction.

A wave function describing a filled Fermi sea [35] of
CFs [36] projected into the lowest Landau level was given
(in the spherical geometry) by Rezayi and Read [37]. On
a torus, the analogous state is given by:

|ΨCF({ki})〉 = det
i, j

[
eiki ·R j

]
|Ψ1/2〉, (1)

where |Ψ1/2({ki})〉 is the bosonic Laughlin state at half
filling [38] and Ri are the guiding-center coordinates
that act within a Landau level, independently of its
index. They satisfy the commutation rule, [Ra

i ,Rb
j ] =

−iεab`2
B,where eab is the antisymmetric symbol, and `B

is the magnetic length.. The set of {ki}i=1,...Ne , are
single particle “momenta”, where Ne is the number of
electrons in the system. Periodic boundary conditions
(PBC) require that k satisfy exp(ik · La) = 1, where La
for a = 1,2 are primitive translation vectors that spec-
ify the torus [39]. The set {ki}i=1,...Ne completely char-

acterizes the many body state with a total momentum
K = ∑

i{ki}/Ne relative to the allowed values[38]. The
exponential factors in the determinant act as transla-
tion operators on |Ψ1/2〉 by displacing the i’th particle by
da = εbakb`

2
B. It can be seen that under a uniform boost

of each ki the above wave function remain invariant. (up
to a phase and an overall multiplicative constant). This
property is called K invariance[40–42].

The variational energy of the wave function is lowest if
the set of {ki} are compactly clustered. A phenomenolog-
ical Hamiltonian that possesses clustering and K invari-
ance properties was given by Haldane[40].

H0 = ħ2

2m∗Ne

∑
i< j

|ki −k j|2, (2)

where m∗ is the effective mass of the composite fermions.
The Fermi liquid parameters of this model are all zero
except F1 =−1.

The CF wave function ΨCF, however, is computation-
ally prohibitive to use particularly for Monte Carlo calcu-
lations because of its explicit antisymmetrization that re-
quires Ne! operations. Therefore, we use an approximate
wave function defined on a torus, which is analogous to
the wave function in the spherical geometry by Jain and
Kamilla [43]. It was used by Shao et al. [44] to calculate
entanglement entropy. For a system with Ne electrons on
a torus at half filling, the total flux through the system is
Nφ = 2Ne. The CF wave function, in the symmetric gauge,
where the zeros of the Laughlin state are displaced by the
{di}i=1...Ne is then

FCF = det
i, j

(
e−d∗

j zi
∏

k( 6=i)
σ(zi − zk +2(d j − d̄))

)
×FCM(

∑
i

(zi + d̄)e−
∑

i zi z∗i /2, (3)

where zi ≡ (xi + i yi)/
p

2`B, di ≡ (dx
i + id y

i )/
p

2`B, and d̄ ≡∑
i di/Ne. The center of mass term is FCM(z) ≡σ(z)2, and

σ(z) is a modified Weierstrass sigma-function[45]:

σ(z)= ϑ1(κz;τ)
κϑ′(0;τ)

exp i(κz)2/π(τ−τ∗). (4)

Here ϑ1 is a Jacobi theta-function, κ = π/L1, L ≡ (Lx +
iL y)/

p
2`B is the linear complex dimension of the system,

with L∗
1L2 −L∗

2L1 = 2πiNφ, and τ≡ L2/L1 is the modular
parameter of the torus[46]. For the present calculations
we have chosen a square torus[47].

To calculate the expectation value of the Coulomb inter-
action in different Landau levels (ignoring Landau level
mixing), we use a Landau-level specific Hamiltonian for
ν= 1/2 for n = 0, 5/2 for n = 1, and 9/2 for n = 2:

H =∑
q

∑
i< j

eiq·(Ri−R j)Ṽ (q)L2
n

(
q2

2

)
e−q2/2 (5)

where Ln(x) is the Laguerre polynomial of order n [38]
and Ṽ (q) = 1/q, with n = 0 for ν = 1/2, n = 1 for ν = 5/2,
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and n = 2 for ν= 9/2. However, Monte-Carlo calculation of
the variational energy of this state for high LLs becomes
very noisy and must be regularized. The root of this ultra-
violet behavior can be traced to strong short range repul-
sions that are generated by the Laguerre polynomials[48].
Fortunately, there is a physical way to regularize the
Monte Carlo integration. We introduce a short distance
cut-off η by modifying the 1/r dependence of the Coulomb
interactions to 1/

√
(r2 +η2). This form has been proposed

to approximate the effect of finite thickness of the electron
layer [49], where in magnetic length units, η is related to
the average width w̄ by η= w̄/2[49].

Ṽ (q)= e−ηq

q
. (6)

The limit η→ 0 corresponds to the pure Coulomb interac-
tion. We compute Fermi liquid parameters as functions of
η.

We then use variational Monte Carlo to calculate the
Fermi liquid parameters of the Coulomb interaction in the
lowest three half-filled Landau levels for the CF Fermi
liquid state. We follow the technique employed by Kwon
et al. [50], which was used to study the Fermi liquid pa-
rameters of a two-dimensional electron gas. Starting from
a “ground state” of a Fermi sea, with Ne = 37 filled mo-
menta clustered around k = 0, we consider 8 different
low-lying quasiparticle-quasihole pair configurations la-
beled by α = 1, . . . ,8 [Fig. 1(b)]. We then evaluate the en-
ergy (expectation value of the interacting Hamiltonian) of
each of the configurations using Monte Carlo integration.
After parameterizing the energies of these configurations
as a function of angle θα between the quasiparticle and
the quasihole, Eα ≡ E(θα), we fit them to the Fermi liquid
energy functional

E(θα)= E0 +εp −εh −
∑
`

f` cos(`θα) , (7)

where E0 is the energy of the ground state, εp and εh are
the kinetic energies of the quasiparticle and the quasi-
hole, and f` are the Fermi liquid parameters. Since εp
and εh are chosen to be equal, the angular dependence is
encoded purely in f`.

To test for Pomeranchuk instability, we need to normal-
ize the Fermi liquid parameters F` ≡ NF f`, where NF is
the “density of states” at the Fermi energy. Nevertheless,
all other F`’s for ` > 1 can be expressed in terms of F1.
Unlike an ordinary Fermi liquid, however, the CF Fermi
liquid wave functionΨCF is explicitly K invariant. By fix-
ing F1 =−1[42] we obtain the values of other Fermi liquid
parameters for the composite Fermi liquid.

Our results are summarized in Fig. 2, where F2 in n =
0,1,2 Landau levels are plotted as functions of η. The
error is bound by the machine precision and the statistical
error from Monte Carlo is smaller than the width of the
lines.
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FIG. 2. `= 2 Fermi liquid parameter F2 for three Landau levels
(n = 0,1, and 2) plotted as functions of η. Stars mark the critical
values of η = ηc which yield F2 = −1 (ηc = 0.81 for n = 1 and
ηc = 1.64 for n = 2).
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FIG. 3. Fermi liquid parameters F` (a) slightly below the critical
value of η for n = 2 (η= 1.6) and (b) above the critical value of η
for n = 2 (η= 3.0). For larger η, all Fermi liquid parameters are
above Pomeranchuk instability point (Fl >= −1) and hence the
system is stable against Pomeranchuk instability in any chan-
nel. For η slightly below the critical value for n = 2, only the
l = 2 channel shows instability.

For the lowest (n = 0) Landau level, no Pomeranchuk
instability (other than ` = 1) is found for any value of η.
In higher (n = 1,2) Landau levels, on the other hand, we
find Pomeranchuk instability in the nematic (`= 2) chan-
nel at critical values of η= ηc defined by F2 =−1: ηc = 0.81
for n = 1 and ηc = 1.64 for n = 2. As Fig. 3 shows, Pomer-
anchuk instability in the nematic channel occurs over a
wider range of the phenomenological cutoff parameter for
n = 2, which is consistent with the experimental observa-
tion of the QH nematic state being limited to n = 2 under
ambient pressure. On the other hand, the fact that n = 1
can indeed show nematic instability for η < ηc = 0.81 is
significant in light of a recent observation [21] of transi-
tion between a fractional QH state and a nematic state at
filling factor ν= 5/2.

The corresponding value of η for the quantum well of
width w0 ∼ 1.5`B (or less) used by Samkharadze et al.
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[21], using either the model of Ref. [49] or the model of
Ref. [51], puts the system slightly below the critical value
ηc for n = 1. Hence our results, taken on face value, pre-
dict nematic instability even under ambient conditions
for the system. However, under these conditions, exper-
iments as well as finite size studies [52], unlike the n = 2
case, do not show any sign of nematic order at ν = 5/2.
The gapped phase at the 5/2 Landau level filling preempts
the nematic phase. Unfortunately, the pairing instability
leading to a gapped phase at ν= 5/2 is inaccessible to our
calculation. Nonetheless it is significant that we observe
a Pomeranchuk instability at ν= 5/2, as it shows that the
broken symmetry phase is in fact contiguous to the paired
phase [52]; under slight changes of the interaction poten-
tial the ` = 2 Pomeranchuk deformation becomes a rele-
vant perturbation. In the Samkharadze et al. [21] exper-
iment, hydrostatic pressure drives the instability to the
nematic phase.

We have looked into the possibility of Pomeranchuk in-
stability in other channels. Interestingly, we find Pomer-
anchuk instability only in the ` = 2 channel (other than
`= 1, which is required by the K-invariance). In Fig. 3 we
plot F` for ` = 1, . . . ,5 for η = 1.60 < ηc, and η = 3.00 > ηc,
where ηc is the critical value of the cutoff paramer η, be-
low which F2 <−1 in the n = 2 Landau level. For η< ηc in
Fig. 3(a), F2 <−1 for n = 2 while all the other F` >−1 for
` > 2. For the lowest two n = 0 and n = 1 levels for both
values of η > ηc no pomeranchuk instability is observed.
In both cases, the Fermi liquid parameters F` are roughly
a decreasing function of `. In all parameter ranges we
have considered, ` = 2 is the leading instability with the
most negative Fermi liquid parameter except `= 1.

The system of 37-electrons used in our calculations is
sufficiently large for the purpose of detecting the Pomer-
anchuk instability that favors the nematic phase[53]. Our
system is sufficiently large with a nearly circular Fermi
surface to minimize the energy differences between par-
ticle and hole excitations[54]. However, for finite sizes
the critical layer width would depend on the details of the
Fermi surface and the geometry of torus unit cell. Landau
level mixing, which we have ignored, will presumably also
affect critical widths. None of these effects appear to be
large enough to change our main conclusions.

In summary, we explicitly calculated the Fermi liquid
parameters of a CF Fermi fluid to check for the Pomer-
anchuk instability in a given angular momentum chan-
nel indicated by Fl < −1. Ignoring Landau-level mixing,
we used a Landau-level specific Hamiltonian and took
the finite quantum well-thickness into account, following
Ref. [49]. Our results revealed remarkable trends: 1) both
n = 1 and n = 2 HFLL states exhibit nematic instability
(l = 2 Pomeranchuk instability) below a critical value of
thickness parameters; 2) n = 2 HFLL shows nematic in-
stability at higher critical thickness leaving a wider range
of thickness parameters for nematic order, whereas the ηc
for n = 1 is below one magnetic length; 3) Fl > −1 for all

l > 2, ruling out all Pomeranchuk instability other than
the nematic instability. These observations are remark-
ably consistent with experimental observations of a ne-
matic QH state being limited to n = 2 HFLL under ambi-
ent conditions in that this HFLL has a much wider range
of η that show nematic instability than the n = 1 HFLL.
Also our results predict the ν = 1/2 state to be stable
against Pomeranchuk instability. Our findings are qual-
itatively consistent with earlier observations of the QH
nematic state that the anisotropic behavior is favored at
smaller values of the thickness parameter[30, 32]. Nev-
ertheless our results constitute the first explicit demon-
stration that nematic Pomeranchuk instability can drive
nematic QH states with isotropic screened Coulomb inter-
actions.

Our finding of nematic instability in the n = 1 Landau
level for η < 0.8 clearly shows that the nematic order is
a contending phase for the ν= 5/2 state. Recent observa-
tion of such a transition driven by isotropic pressure[21]
corroborates this picture.

However, the analysis for the case of 5/2-filling is more
complicated since there could be a competition among
nematic, smectic, and p-wave paired Moore-Read[12]
phases. The energy scale below which the anisotropic
gapless phase has been observed at 5/2 is more than an
order of magnitude smaller than the predictions of HF
approximation[28]. A similar trend appears for the 9/2-
filling[2]. To our knowledge there is no method of detect-
ing pairing instability from Fermi liquid parameters. The
question as to which of these phases prevails can be an-
swered by energetic considerations, which is beyond the
scope of this Letter. Finite size calculations show that
under ambient presure and un-tilted magnetic field the
paired phase appears to be dominant[32, 55, 56], in agree-
ment with experiment.
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