aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Berry Phase and Model Wave Function in the Half-Filled
Landau Level
Scott D. Geraedts, Jie Wang, E. H. Rezayi, and F. D. M. Haldane
Phys. Rev. Lett. 121, 147202 — Published 3 October 2018
DOI: 10.1103/PhysRevlLett.121.147202


http://dx.doi.org/10.1103/PhysRevLett.121.147202

Berry Phase and Model Wavefunction in the Half-filled Landau Level

Scott D. Geraedts'?, Jie Wang!, E. H. Rezayi® and F. D. M. Haldane'
! Department of Physics, Princeton University, Princeton NJ 08544, USA
2 Department of Electrical Engineering, Princeton University, Princeton NJ 08544, USA and
3 Department of Physics, California State University, Los Angeles, CA 90032, USA

We construct model wavefunctions for the half-filled Landau level parameterized by “composite
fermion occupation-number configurations” in a two-dimensional momentum space, which corre-
spond to a Fermi sea with particle-hole excitations. When these correspond to a weakly-excited
Fermi sea, they have large overlap with wavefunctions obtained by exact diagonalization of lowest-
Landau-level electrons interacting with a Coulomb interaction, allowing exact states to be identified
with quasiparticle configurations. We then formulate a many-body version of the single-particle
Berry phase for adiabatic transport of a single quasiparticle around a path in momentum space, and
evaluate it using a sequence of exact eigenstates in which a single quasiparticle moves incrementally.
In this formulation the standard free-particle construction in terms of the overlap between “periodic
parts of successive Bloch wavefunctions” is reinterpreted as the matrix element of a “momentum
boost” operator between the full Bloch states, which becomes the matrix elements of a Girvin-
MacDonald-Platzman density operator in the many-body context. This allows computation of the
Berry phase for transport of a single composite fermion around the Fermi surface. In addition to a

phase contributed by the density operator, we find a phase of exactly « for this process.

Two-dimensional gases of charge-e electrons in high
magnetic fields exhibit a wide variety of interesting phys-
ical properties. Perhaps most notable of these is the
quantum Hall effect, which is a classic example of a
topological phase. Another interesting phase occurs at
even-denominator filling, the so-called “composite Fermi
liquid” (CFL) [1]. This compressible phase is tradi-
tionally thought of as a Fermi liquid of “composite
fermions” [2, 3]-bound states of electrons and even num-
bers of flux quanta, which experience no net magnetic
field.

The composite Fermi liquid has been described the-
oretically in a number of complementary ways, such
as through a model wavefunction [4], an effective field
theory, called Halperin-Lee-Read (HLR) theory [1] and
through flux attachment [2]. When projected into a sin-
gle Landau level, the problem at half-filling (v = 1/2) has
a particle-hole symmetry which takes v — 1 —v. It is
unclear how the various descriptions realize this particle-
hole symmetry. At small sizes the model wavefunction
has numerically been found to be very close to particle
hole symmetric. It is difficult to see how the other de-
scriptions behave under particle-hole symmetry because
in order for this symmetry to exist we must project into
a single Landau level, an analytically difficult procedure.
Before this projection, the descriptions are clearly not
particle-hole symmetric, an issue which has been dis-
cussed in a number of previous works [5-9].

Recently Son [10] has proposed an alternative to the
HLR theory which is particle-hole symmetric even before
Landau level projection. In Son’s theory the composite
fermions are neutral Dirac fermions. One consequence
of this is that the composite fermions should acquire a
Berry phase of 7 when moved around the Fermi surface.
This © Berry phase has been indirectly confirmed nu-

merically by observing an absence of m-backscattering in
a density matrix renormalization group study [11] but
only for composite fermions that sit exactly on the Fermi
surface. A direct measurement of the Berry phase for a
wider variety of paths in momentum space is the main
result of this work.

The Berry phase factor exp(iép) is the phase acquired
when a quantum state is adiabatically evolved around a
closed path I' in parameter space, while remaining in the
same Hilbert space. When a single-particle Bloch state
is evolved around a path in momentum space, this must
be modified, as Bloch states with different Bloch vectors
k belong to different Hilbert subspaces, and cannot be
compared. The usual approach is to factorize the Bloch
wavefunction ¥g(x) into a periodic part ug(x) times a
Bloch factor exp(ik - @), and treat the periodic factor
alone as the “wavefunction”. We can reinterpret the over-
lap (ug, |uk,) as the matrix element (g, |p(k1 —k2) |tk ),
where p(q) is the Fourier-transformed density operator
exp(ig - ).

We generalize the momentum space Berry phase to a
many-body system in the following way:

e = TT (KD (@) T ({k:}), M)

path
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plq) = Z eI ki =k; + qd; N (2)
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In the above equation we have assumed that ¥ can be ex-
pressed as a Slater determinant of N composite fermions,
each with momentum k;. The “path” is a closed path in
momentum space taken by ky, the momentum of the
composite fermion which moves around the path, while
the others are unchanged.

In this paper we calculate the Berry phase from Eq. (1)
using exact diagonalization (ED) in the basis of “guiding



center states” left after projection into a single Landau
level. This also means that the operators p(q) becomes
the non-commutative Girvin-MacDonald-Platzman [12]
(GMP) operators. Two body interaction is particle-hole
symmetric at v = 1/2 if it is restricted in a single Lan-
dau level; in this work we use pure Coulomb interaction
projected into the lowest Landau level which was known
to favor the CFL state [4]. To apply Eq. (1) we need
to show that the states produced by ED can indeed be
identified with the analogs of Slater determinants of com-
posite fermions, and assign a configuration {k} to each
ED state in the sequence. We accomplish this by com-
paring the ED states to a model wavefunction [13-15].

Comparison of the model wavefunction and ex-
act eigenstates. The model wavefunction often used
for the composite Fermi liquid is a determinant of trans-
lation operators acting on a bosonic ¥ = 1/2 Laughlin
state. Because the operator-valued determinant must be
expanded, such a wavefunction has computational com-
plexity N! for N electrons. We instead consider a model
CFL wavefunction on the torus [16], which was previ-
ously used in [17], with only N3 complexity, inspired by
a similar construction on the sphere [18].

The N-particle wavefunction can describe a v = 1/m
CFL, although here we take m = 2. It is parameterized
by a set of N distinct displacements {d;} which obey the
quantization condition Nd; € {L}, where L are periods
of the torus; p; = ed; x B (B normal to the 2D plane)
are the “occupied momentum states” of the CFL “Fermi
sea”. A linear complex structure z(x) = e - x maps the
Euclidean plane into the complex plane: z; = z(x;), d; =
z(d;) and A = {2(L)}. (The choice of e is a variational
parameter that determines the shape of the correlation
hole formed around the particles by “flux attachment”)
Then, with A = 27mN#? as the area of the primitive cell
of the torus,

U({xi}) o F({z},{d:}) - He—*'%' e (3)

where
F({zi}, {di}) = det ¥i(d D67z —2),
1<J
pi(d) = 2N 6(2i — 2 — d+ d).
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iL¥}/+/2 is the lattice of periodic translation& mapped
to the complex plane; 5(z) = exp(—5C32(A)z%)o(z|A) is a
“modified sigma function” [19], where C2(A) vanishes for
square and hexagonal lattices, and o(z|A) is the standard
Weierstrass sigma function. The parameter d is a free pa-
rameter that can conveniently be chosen as N~ d;,

Here z;

but it is not a variational parameter: changing d turns
out to just multiply the model wavefunction by a com-
plex constant, changing the normalization, but not the
physical properties. This mathematical property reflects
an invariance under a uniform translation of the set of
“occupied orbitals” in “momentum space”. The model
state is a member of an m-fold topologically-degenerate
multiplet on the torus, parameterized by the set {ay},
constrained by Y, ar = Y. d;.

The determinant can be interpreted as attaching each
electron to an area of reduced density. The object which
results from this flux attachment is neutral and has
a dipole moment d which is a free parameter of the
wavefunction. We interpret this object as a composite
fermion, and by the commutation relations of a single
Landau level, the dipole moment specifies the momen-
tum of this composite fermion, (ds,dy) = (ky, —kz). In
order for the wavefunction to satisfy translational sym-
metry, both the d, and d, must take values Z/N [20].
The final term in Eq. (4) is what is left of the Vander-
monde factor after two powers of (z; — z;) were used to
construct the determinant.

We now wish to compare this model wavefunction to
numerically obtained eigenstates expressed in second-
quantized form. To second-quantize the model wavefunc-
tion, consider that any many-body wave function ¥({z})
evaluated on a set of points {z} can be written as:

V({z}) =) e({nh)o({z} {n}). (5)
{n}

where ¢({z},{n}) is a Slater determinant of single-
particle basis states for a single Landau level. The co-
efficients ¢({n}) are of course independent of {z}, so by
evaluating ¥({z}) and ¢({z}, {n}) for many different sets
of {z} we can compute ¢({n}) using a linear solver. This
method relies on the fact that the wavefunction ¥({z})
is already projected into a single Landau level, so that
there are a finite number of single-particle basis states.
Note that depending on the chosen sets of {z}, the matrix
#({z},{n}) can be quite numerically unstable. Therefore
we actually find it necessary to evaluate the wavefunction
at a number of {z} points larger than the Hilbert space
dimension, and to compute ¢({n}) as the solution to a
least-squares problem.

Carrying out this procedure allows us to compare the
model wavefunction to ED states. The results of this
study are shown in Fig. (1), where we choose a number
of different {d} configurations, and compute their en-
ergy, overlap with ED states and energy variance (which
is zero for eigenstates of the Hamiltonian, and nonzero
otherwise).

Fig. (1) shows us that states where the {d} configura-
tions are clustered are very close to the exact eigenstates.
As the {d} become less clustered, these properties are
reduced and also the energy increases. Our interpreta-
tion of these results is that the ground state and a few
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FIG. 1. The energy, energy variance, overlap with exact eigen-
states, and overlap with PH conjugates for a number of model
states, with the {d} configurations shown. We see that clus-
tered {d} configurations have low energies, good overlap with
exact eigenstates, and are PH symmetric, while less clustered
configurations lose these properties.

low-lying excited states can be well approximated by a
composite fermion picture, but other states cannot. Note
that Eq. (4) is invariant under changing all the {d} by a
fixed amount. This implies that the wavefunction is in-
dependent of the location of the center of the Fermi sea,
it only depends on the shape of the Fermi sea.

One can try to use the model wavefunction to obtain
multiple states for the same momentum K, by changing
the {d} configurations in a manner corresponding to ex-
citing composite fermions out of the Fermi surface. How-
ever, we find that the different “composite fermion exci-
tations” are not linearly independent. We can construct
the model wavefunctions for all possible excitations which
move composite fermion momenta by one lattice spacing
in some direction, and compute the overlap matrix for
the resulting states. We find that the rank of this matrix
is always one less than the number of states. A possible
physical explanation for this observation is that the there
is an extra gauge degree of freedom that gaps out a Fermi
surface excitation mode. This observation is analogous
to the reduced central charge observed in Ref. (11) and
is due to the non-Fermi liquid character of the CFL.

Particle-Hole Symmetry and Berry Phase. Ana-
lytically evaluating the action of particle-hole symmetry
on Eq. (4) can in principle be done following Ref. (21),
but is in practice intractable. Once we have expressed the
model wavefunction in the second-quantized basis, how-
ever, particle-hole symmetry is easy to implement since
we just interchange the filled and empty states. For a
model state with composite fermion dipole moments {d}
, we find that the overlap between its PH conjugate and
the model state with dipole moments {—d} is close to
one, i.e. particle-hole symmetry flips the momenta of
the composite fermions. Therefore the combination of
PH and a rotation by 7 (R,) leaves the total momen-
tum unchanged, so we can compute the quantity,

(U[PH Ry |W). (6)

and expect that it is 1 for PH symmetric states. In
Fig. (1) we give the values for this quantity for vari-

ous {d} configurations, for both exact and model states.
We see that the model states in which the composite
fermions are clustered to form a Fermi sea are indeed
nearly particle-hole symmetric.

We now measure the Berry phase. For a given ED
state, we use the overlap with the model wavefunction
to determine whether that state can be well-described in
terms of composite fermions, and also which composite
fermions are filled for that state. We prepare a sequence
states which consist of a filled “Fermi surface” plus or
minus one composite fermion. We can compute Eq. (1)
for a sequence of states where this “extra” composite
fermion moves around some closed path.

One subtlety when computing the Berry phase around
the center of the Fermi sea is that the center of the Fermi
sea is not gauge invariant: we can translate all the com-
posite fermions by one lattice spacing without changing
any physics. Therefore the notion of transporting a com-
posite fermion “around the center of the Fermi sea” is
only well-defined when a compact Fermi sea is present.
Furthermore in order for a path around the Fermi surface
to be defined we also have to exclude non-trivial paths
around the torus. Therefore in what follows we must re-
strict ourself to the case where a composite Fermi sea
exists, and the composite fermion we are moving is not
too far from this Fermi sea (so that it cannot wind around
the torus). The results of the previous section show that
such states are the only states which are well described
by a composite fermion picture.

Another issue when computing the “many-body Berry-
like phase” defined in Eq. (1) is that we expect that
the phase should behave smoothly in the thermodynamic
limit as the individual steps in the path become in-
finitesimal and the the path in momentum space becomes
smooth and continuous. However we did observe an ad-
ditional geometric phase factor associated with the the
projected GMP density operator p(q) in each segment of
the path. Fortunately we can use the symmetries of the
problem to determine what this phase is, and we summa-
rize these results in Fig. (2). First consider the combina-
tion of particle hole and inversion symmetry discussed in
Eq. (6). This symmetry takes p(q) = —p(¢) and i — —i.
A simple overlap behaves like (Uq|¥o) — (U1|Us)* un-
der this symmetry, while the matrix element in Eq. (1)
behaves like (Uq|p|Ws) — —(¥q|p|T2)*. From this we
deduce that the extra phase contributed by the p(q) is
purely imaginary.

Empirically, we observed that the expression for the
phase factor defined by Eq. (1) appears to be

ei‘I’r‘ _ (Z-)NJFfN, €i<I>r. (7)

where Ny are the number of discrete steps around the
Fermi surface that are in the positive (anticlockwise)
sense and N_ is the number in the negative (clockwise)
sense, and e’®r is the “true” Berry phase factor which is



FIG. 2. The density operator in Eq. (1) adds an additional
phase to our Berry phase calculation, with is imaginary due
to particle-hole symmetry. An anti-unitary reflection sym-
metry (present in the thermodynamic limit, as well as in
the square lattice considered here) introduces a relative —1
between clockwise and counterclockwise hopping, while also
forbidding hopping in a direction normal to the Fermi surface.

(—1)" if the path stays close to the Fermi surface with
winding number W.

Another constraint on the phase associated with p(q)
can be found from an anti-unitary reflection symme-
try about the (e.g.) z-axis, which takes i — —i and
ky — —k;. Such a symmetry exists for a torus with
square or hexagonal boundary conditions, and it also ex-
ists in the thermodynamic limit. For a given composite
fermion momentum k, we can define an angle 6} rela-
tive to the center of the Fermi sea. Such a definition
requires that a compact Fermi sea exists, but we have
seen in the previous section that this is true for com-
posite Fermi liquid states. Given a composite fermion
momentum k; and a momentum change g, we can then
define dfy; = 0y4q — 0r. The reflection symmetry takes
df, — —db,. Tt takes (¥1|¥s) — (T1|P2)* and (since
we already established that p(q) contributes a purely
imaginary phase) (U1|p(df,)|V2) — —(T1|p(—db,)|T2)*.
From this we know that the phase contributed by the
p(df,) changes sign when the sign of df, changes sign.

Putting reflection and particle-hole symmetry together
gives precisely the relation in Eq. (7). Note that for odd
Niteps one can change the sign of the Berry phase by go-
ing around the path I' in the opposite direction, to avoid
dealing with this ambiguity we restrict to paths with even
Nsteps- Also note that steps with df, = 0 (perpendicu-
lar to the Fermi surface, see Fig. 2) are forbidden by the
reflection symmetry.

The results of measuring the Berry phase can be seen in
Fig. (3), where we show the ®r extracted from Eq. (1) for
a variety of system sizes, and paths taken by the compos-
ite fermion. In addition to computing these phases using
exact wavefunction obtained from diagonalization of the
Hamiltonian (‘i’exact), we can compute them purely from
the model wavefunction (i)modcl), providing another way
of estimating how close to exact the model wavefunction
is. By comparing Figs. (3)(a-c) we observe the sign struc-
ture predicted from the above symmetry analysis. Using
Eq. (7) we find that the true Berry phase & = 7 for
paths encircling the center of the Fermi surface. Note
also that our Berry phase is always 0 or m, there is no
component related to the area enclosed by the path, con-
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FIG. 3. Berry phases observed for a variety of paths around
the Fermi surface. The solid symbols represent the locations
of composite fermions, and for each step on the path we re-
move a composite fermion at the location of the empty sym-
bols (i.e. we are moving a composite hole around the Fermi
surface). There are a number of effects which arise from the
insertion of a density operator in Eq. (1). These differences
lead to additional phases summarized in Eq. (7). We com-
pute these Berry phase &)cxact for the exact ED states, and
P odel for the model wavefunction of Eq. (4). In both cases
the results, combined with Eq. (7), indicate a Berry phase of
® = 7 when the center of the Fermi surface is encircled.
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FIG. 4. Same as Fig. (3), but for N = 13. The stars indicate
an additional composite fermion which we are moving around
the Fermi surface. At this size we are able to construct paths
which do not enclose the origin, and we find ®exact = 0 for
these paths (c¢), and ®Pexact = 7 for others.

sistent with the composite fermions seeing no external
field.

In Fig. (4) we perform the same analysis, this time with
N = 13. This system size is too large to second quantize
the model wavefunction, and therefore we only compute
Pernct from the Hamiltonian. In our paper Ref. (20), we
describe an improved Monte Carlo procedure which en-
ables us to compute the Berry phase émodel of a model
wavefunction for N up to 70. This supports the conclu-
sions drawn in this work by allowing us to generate data
like in Figs. (3) and (4) but for much larger sizes.

Conclusion. In this work we have used a model wave-
function for the half-filled Landau level to argue that the
ground states obtained in exact diagonalization can be
expressed as Slater determinants of non-interacting com-
posite fermion states. We have shown that this descrip-
tion only holds when the composite fermion momenta are
clustered into a Fermi surface-like configuration. These
states are also particle-hole symmetric. We then com-
puted the Berry phase upon taking a composite fermion



around the Fermi surface. We show that this Berry
phase is m when the path taken by the composite fermion
encloses the Fermi surface, and zero otherwise. Emer-
gent particle-hole symmetries have also been proposed
at v = 1 for bosons [8, 22, 23]. In the Supplemental
Material [24], we also tested how close to exact for other
candidate model wavefunctions.

Our results are consistent with the theory of Son [10],
in which the Berry phase arises from the Dirac nature of
the composite fermions. However the composite fermions
discussed in our work are single-component objects, and
the relation to a two-component composite Dirac fermion
is unclear. While the model wavefunction with a compact
Fermi surface is unexpectedly close to being particle-hole
symmetric, if a quasi-hole is moved inside the Fermi sur-
face, this breaks down: the particle-hole conjugate states
have less and less overlap and become orthogonal as the
quasi-hole approaches the center of Fermi surface. By
forming orthogonal linear combinations of particle-hole
conjugate states, the Dirac cone is possible to be found.

We recently become aware of Ref. (15) by M. Fremling
et al. where the authors performed similar analysis of
CFL’s energy, particle-hole symmetry and overlap prop-
erty [13], by a different lowest Landau level projection
method. To compute the Berry phase, M. Fremling et
al. moved two composite fermions at opposite sides of
the Fermi disc for N steps and found a phase of /™ (N=1)
which is consistent with the rule in Eq. (7) and described
in Ref. (13, 14, and 20) by taking N, = 2N, N_ = 0,
¢ =.
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