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After a bubble bursts at a liquid surface, the collapse of the cavity generates capillary waves,
which focus on the axis of symmetry to produce a jet. The cavity and jet dynamics are primarily
controlled by a non-dimensional number that compares capillary inertia and viscous forces, i.e. the
Laplace number La= ργR0/µ

2, where ρ, µ, γ and R0 are the liquid density, viscosity, interfacial
tension, and the initial bubble radius, respectively. In this paper, we show that the time-dependent
profiles of cavity collapse (t < t0) and jet formation (t > t0) both obey a |t− t0|2/3 inviscid scaling,
which results from a balance between surface tension and inertia forces. Moreover, we present a
scaling law, valid above a critical Laplace number, which reconciles the time-dependent scaling with
the recent scaling theory that links the Laplace number to the final jet velocity and ejected droplet
size. This leads to a self-similar formula which describes the history of the jetting process, from
cavity collapse to droplet formation.

PACS numbers:

Bubbles bursting is ubiquitous in everyday life and is
important for the climate, owing to the exchange of gas,
water, heat, and chemical species between ocean and at-
mosphere [1–7]. After a bubble bursts, a jet forms and
liquid drops detached from the jet are emitted to the at-
mosphere. The aerosol of drops (size ranges from 1 to
100 µm) that stays in the atmosphere is crucial since
it regulates atmospheric chemistry [8], threatens human
health by sending marine biotoxins and viruses to the
atmosphere [9–11], and affects earth’s radiation balance,
cloud and ice crystals formation and precipitation [7, 12–
15]. Due to the broad impact across a range of research
fields, the dynamics of bubble bursting has been an active
area of research for the past 60 years.

Much recent progress was made linking jet dynamics
with the physical properties of the liquid. Ghabache et
al. [16, 17] developed scaling laws for the jet velocity as a
function of the size of the jet drop, the liquid properties
and the initial size of the mother bubble. A set of scaling
laws for the jet velocity, the radial and axial length of
the jet as a function of the liquid properties have been
developed using a force and energy argument [18] and the
effects of gravity were investigated theoretically [19]. The
effect of gravity on jet velocity and the critical conditions
for ejection of jet drops were examined numerically by
Deike et al. [20].

Zeff et al. [21] showed that a liquid-water interface,
before a surface wave collapses at time t0, is self-similar
and obeys a (t0−t)2/3 inertial-capillary scaling law, which
has been shown to apply to cavity collapse [16, 22] and
jet formation in certain regime [23]. However, the ex-
isting (t0 − t)2/3 scaling laws only describe the bursting
dyamics for a given set of fluid properties. The connec-
tion between the time-dependent self-similar scaling and
a global scaling that involves fluid properties (e.g. the
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FIG. 1: The time evolution of the liquid-gas interface of a
bursting bubble of initial radius R0 at La = 2000 and Bo
= 10−3. The color bar indicates the time corresponding to
different profiles. (a) The formation of a jet after the collapse
of capillary waves. The time difference between the curves
are δt/τ = 0.038, where τ =

√
ρR3

0/γ is the inertio-capillary
time scale. The time when a jet ejects a drop is td. (b) The
interface profiles right before a bubble is entrained. The time
difference between the curves is δt/τ = 0.0003. As the front
of the capillary wave approaches r = 0 the interface steepens,
snaps, entrains a bubble, and forms a jet at t = t0. The
bottom location of the bubble at the entrapment is denoted
with h0.

Ganan-Calvo scaling [18]) has not been addressed. Here,
we present a universal scaling law for the dynamics of
both cavity collapse (t < t0) and jet formation (t > t0),
which incorporates both the time-dependent 2/3 scaling
law and the Ganan-Calvo scaling [18], to describe the
liquid-gas interface as a function of time t, liquid prop-
erties (viscosity µ, interfacial tension γ, and density ρ),
and the initial bubble radius R0.

We simulate numerically the dynamics of bubbles
bursting using the open source solver Gerris with an
adaptive mesh [24, 25], which has yielded excellent agree-
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ment with experimental results [20, 23]. We assume an
axisymmetric system and solve the full two-phase Navier-
Stokes equation. For a bubble with initial radius R0 in
a liquid with density ρ, interfacial tension γ and viscos-
ity µ, the relevant dimensionless numbers are the Bond
number Bo ≡ ρgR2

0/γ (relative importance of gravita-
tional forces compared to surface tension forces) and the
Laplace number La ≡ ργR0/µ

2 = 1/Oh2 [20] (relative
importance of surface tension forces to viscous forces),
where Oh is the Ohnesorge number. The initial static
bubble shape depends only on Bo, and is computed by
solving the Young-Laplace equations [26]. The time evo-
lution of the liquid-gas interface h(r, t) for La = 2000
and Bo = 10−3, solved with a grid size up to 40962 and
819 grid points across the bubble diameter, is plotted in
Fig. 1(a).

After a bubble bursts, capillary waves travel along the
interface towards the bottom of the bubble cavity. A jet
is formed when the capillary waves collapse and the cur-
vature of the interface reverses at a time t0. For La ≥
La∗ ≈ 500 [20, 27], a jet drop detaches from the top of
the jet at td after the jet grows to a certain length. For
La < La∗ no drops detach from the liquid jet. The cav-
ity profiles near the curvature reversal (dashed window
in Fig. 1(a)) right before the jet forms at t0 is plotted
in Fig. 1(b). The time difference between the curves
is δt/τ = 0.0003, where τ ≡

√
ρR3

0/γ is the inertio-
capillary time scale. As time approaches t0, the interface
steepens and snaps, entraps a bubble and forms a jet at
t0. The lowest position of the profile at t0 is located at
h = h0 and r = 0. In this paper we focus on the cases
where Bo = 10−3 (corresponds to a bubble of radius 85
µm in water) so that the effects from gravity are negligi-
ble. Note that the jet velocity for Bo = 10−3 and 10−2

are the same [20] and converge to the asymptotic limit
where Bo = 0.

Assuming that during the curvature reversal the in-
ertial forces are of the same orders of magnitude as
the surface tension forces and the viscous forces, and
that the initial surface energy of the bubbles supplies
the viscous dissipation in the capillary waves and the
kinetic energy in the jet formation, Ganan-Calvo ob-
tained relationships involving the dimensionless parame-
ter ϕ ≡

√
La(
√

La/La∗−1) [18]. For a jet near curvature
reversal with a typical vertical speed V , radial speed V ′,
radial length scale R, and vertical length scale L,

V/Vµ = kvϕ
−3/4, (1)

V ′/Vµ = kv′ϕ
−1/2, (2)

R/`µ = kdϕ
5/4, (3)

L/`µ = k`ϕ, (4)

where Vµ ≡ γ/µ and `µ ≡ µ2/ργ. For different La and
Bo = 10−3, we obtain numerically the drop radius Rd,
the length of the jet Ld (defined in Fig. 2(a)) and the
velocity of the drop Vd when a jet drop detaches at td.
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FIG. 2: Comparison between the numerical result (dots) and
the scaling arguments (solid line) in Eqn. (4) and (5). When
the jet drop detaches from the jet at t = td, the length of
the jet and the radius of the jet drop are denoted Ld and
Rd, respectively. (a) The numerical results show that the jet
length Ld ∝ ϕ obeys Eqn. (4) with a fitted pre-factor k` ≈ 50
(solid line). (b) The time scale td − t0, during which the jet
forms and produces a jet drop, agrees well with the solid line
(td − t0) ∝ ϕ7/4 (Eqn. (5) with fitted pre-factor kt ≈ 2).

The numerical and experimental results of drop velocity
Vd and radius Rd have been shown to agree well with
Eqns. (1) and (3), respectively, with fitted pre-factors
kv ≈ 16 and kd ≈ 0.6 [18, 20]. For Eqn. (4), we choose
the length of the jet Ld at td to be the axial length scale
L and obtain a good agreement between the numerical
result and the scaling law with a numerical pre-factor
k` ≈ 50, as shown in Fig. 2 (a) by the solid line.

A typical time scale for jet formation can be quantified
using the time difference between the jet formation t0 and
drop ejection td, i.e. td− t0. A natural time scale for the
flow in the axial direction, using Eqns. (1) and (4), is
L/V ∼ ϕ7/4. Therefore, we obtain a scaling relation for
the axial time scale td − t0,

(td − t0)

`µ/Vµ
= ktϕ

7/4, (5)

which is in excellent agreement with our numerical re-
sults. Eqn. (5) fitted to the numerical results (kt ≈ 2)
is shown by the solid line in Fig. 2(b). This discussion
confirms the robustness of Ganan-Calvo’s scaling law [18]
to characterize the jet variables at drop detachment.

Now, we include the time-dependent dynamics in the
scaling arguments (Eqns. (1)-(5)). The free surface of the
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FIG. 3: (a) The time evolution of the liquid-gas in-
terface during jet formation (t > t0) for La =
1000, 1500, 2000, 5000, 20000, 50000 at times t − t0 =
tj , 3/2tj , 2tj , 5/2tj , where tj ≡ ϕ7/4`µ/Vµ is the character-
istic time of jet formation. (b) The dimensionless jet profiles
rescaled using Eqn. (7). The profiles are shifted in the axial
direction with respective to the bottom of the jet hb. The di-
mensionless profiles for different times and La = 5000−50000
collapse, except for the region of the rounded tip. When La
≤ 2000 (i.e. ϕ ≤ 45) the time scale tj used here deviates
lightly from the jet lifetime td − t0 (see Fig. 2(b)), and there-
fore affects the collapse of the jet onto the universal profile.

liquid-air interface (z = h(r, t)) prior to cavity collapse
(t = t0), assuming the flows are incompressible and ir-
rotational, have been shown numerically and experimen-
tally to be self-similar,

h(r, t) = (t0 − t)2/3f(r(t0 − t)−2/3), (6)

where f is a function of the shape of the surface profile.
Below we show that Eqn. (6) not only applies to cavity
collapse but also the formation of the liquid jet for a wide
range of La.

First, we combine the time-dependent scaling
(Eqn. (6)) with Eqns. (4) and (5), which includes the
dependence of jet profiles h(r, t) on liquid properties
(µ, γ, ρ). In Fig. 2 we show that the axial length scale
L of the jet scales like `µϕ and the axial time scale of the
jet (td − t0) ≈ ϕ7/4`µ/Vµ. Therefore, length and time in
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FIG. 4: (a) The time evolution of the interface during the
cavity collapse (t < t0) for La = 1000, 1500, 2000, 5000, 20000

at times t0 − t = 6tc, 8tc, 10tc, where tc ≡ ϕ3/2`µ/Vµ is
the characteristic time of the horizontal capillary wave. (b)
The rescaled cavity profiles non-dimensionalized according to
Eqn. (8). The bottom of the bubble when bubble entrapment
occurs (t = t0) is denoted h0. The dimensionless profiles col-
lapse onto a universal curve for La = 1000− 5000 during the
time window t0− t = 6tc− 10tc. Near the bubble entrapment
time t0 − t < 6tc the profiles steepens and snaps, and thus
deviates from the universal shape. When La ≥ 5000 multiple
capillary waves are observed (see (a)), and Eqn. (8) does not
collapse the profiles for La > 5000.

Eqn. (6) can be rescaled using the characteristic length
scale `µϕ and time scale tj ≡ ϕ7/4`µ/Vµ, respectively.
Therefore the dimensionless interface profiles during jet
formation (t > t0) can be written as

h− hb
`µϕ

=

(
t− t0
tj

)2/3

ga

[
r

`µϕ

(
t− t0
tj

)−2/3]
, (7)

in which ga is the dimensionless shape of the profile after
the curvature reversal and hb is the bottom location of
the jet. To test Eqn. (7) we plot the jet profiles for a
range of Laplace number (La = 1000 − 50000) at times
t − t0 = tj , 3/2tj , 2tj , 5/2tj in Fig. 3(a). After non-
dimensionalizing Fig. 3(a) using Eqn. (7), the dimension-
less jet profiles for different parameters La and different
times collapse except for a region near the rounded tip,
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as shown by Fig. 3(b). Very close to the curvature rever-
sal time during (t − t0) < tj the profiles fail to collapse,
since the jet is comprised mostly by its rounded tip. We
note that the size of the rounded tip of the jet does not
vary much with time and is roughly the same size as the
jet drop Rd, and thus scales as R ≈ `µϕ

5/4 (Eqn. (3)).
While the size of the rounded tip and the jet drop are set
by the radial length scale R at t = t0, the radius of the
jet body at long times scales the same way as the axial
jet length L ≈ `µϕ, as predicted by Eqn. (6).

On the other hand, before the cavity collapses (t < t0),
capillary waves travel in the radial direction with a char-
acteristic velocity V ′ (Eqn. (2)). The time scale for the
capillary wave to reach the center, according to Eqns. (2)
and (4), can be estimated as L/V ′ ≈ ϕ3/2`µ/Vµ. There-
fore we define a characteristic time for the traveling cap-
illary wave as tc ≡ ϕ3/2`µ/Vµ. The cavity profiles at La
= 1000 − 20000 and t0 − t = 6tc, 8tc, 10tc are plotted in
Fig. 4(b). For La = 1000− 2000 only one capillary wave
travels on the free surface, while for La ≥ 5000 multiple
capillary waves are observed. Since the length scale of
the capillary wave near the curvature reversal is set by
the Ganan-Calvo length scale L ≈ `µϕ (Eqn. (4)), we
non-dimensionalize the (t0− t)2/3 self-similar cavity pro-
files (Eqn. (6)) with the characteristic length scale `µϕ
and radial time scale tc of the capillary waves.

We propose that the dimensionless cavity profiles (t <
t0) right before the capillary waves collapse obey

h− h0
`µϕ

=

(
t0 − t
tc

)2/3

gb

[
r

`µϕ

(
t0 − t
tc

)−2/3]
, (8)

where gb is the dimensionless shape of the profile before
the curvature reversal and h0 (defined in Fig. 2(a)) is
the location of the bottom of the bubble, also the loca-
tion at which the capillary wave approaches at t0. The
cavity profiles in Fig. 4(a) rescaled using the universal
self-similar scaling (Eqn. (8)) collapse for different La
and a period of time (6tc ≤ t0 − t ≤ 10tc) near t = t0,
as shown in Fig. 4(b). At La ≥ 20000 multiple capillary
waves appear and Eqn. (8) fails to collapse the profiles.
During t0 − t < 6tc the time is too close to the moment
of curvature reversal, and the profiles deviate from the
universal shape due to bubble pinch-off.

The differences between the dimensionless profiles for
cavity collapse (Eqn. (8), where t < t0) and jet forma-
tion (Eqn. (7), where t > t0) are the choice of the times
scale. Therefore, we can rewrite both dimensionless pro-
files, Eqns. (8) and (7), as

H(R, T ) = T 2/3ga,b(RT −2/3) (9)

where R ≡ r/(`µϕ) is the dimensionless width. For
cavity collapse the dimensionless length and time are
H ≡ (h(r, t) − h0)/(`µϕ) and T ≡ (t0 − t)/tc, respec-
tively, where tc ≡ `µϕ

3/2/Vµ is the time scale of the
travling capillary wave. For jet formation, H ≡ (h(r, t)−

hb)/(`µϕ) and T ≡ (t − t0)/tj , where tj ≡ `µϕ
7/4/Vµ

is the time scale of jet formation. The parameters that
were found numerically are the bottom position hb(t) of
the jet, the bottom position h0 of the bubble, the time
t0 when the curvature reverses, and the critical La for
ejection of jet drops La∗. Eqn. (9) agrees well with the
dynamics of both cavity collapse (Fig. 3) and jet for-
mation (Fig. 4) and connects the dynamics with time t,
liquid properties (µ, γ, ρ) and initial bubble radius R0.

The dynamics of the free surface away from the bub-
ble entrapment time t0 obeys the |t − t0|2/3 scaling for
inviscid, incompressible and irrotational flows. In our nu-
merical simulation, we estimate the forces in the Navier-
Stokes equation and find that at times far away from t0,
the viscous forces are small compared with the inertia
and surface tension forces. At t0 the viscous forces reach
the same order of magnitude as the inertia and surface
tension forces, in regions near high interface curvature.
The effects of viscosity come into play during the cur-
vature reversal at t0, which set the length and velocity
scales (Eqns. (1)-(4)) of the flows. Therefore, Eqn. (9)
successfully collapse the interface profiles for both t < t0
and t > t0 at different times and across a range of La.

In conclusion, we study the self-similar dynamics of a
bursting bubble. We report the power-law dependence of
the jet length and the time scale of the jet formation on
the dimensionless parameter ϕ. The jet length Ld at the
moment when a jet drop detaches is proportional to ϕ,
agreeing well with Ganan-Calvo’s scaling. The time from
jet formation to drop detachment obeys td − t0 ∝ ϕ7/4.
Using proper length and time scales, we propose a scaling
law to describe the dynamics of both cavity collapse and
jet formation as a function of time, liquid properties and
the initial bubble size. We show that for a certain range
of time and Laplace number, the dimensionless interfa-
cial profiles collapse, exhibiting self-similar dynamics and
good agreement with the universal scaling law.
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