
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Wannier Representation of Intraband High-Order Harmonic
Generation

F. Catoire, H. Bachau, Z. Wang, C. Blaga, P. Agostini, and L. F. DiMauro
Phys. Rev. Lett. 121, 143902 — Published  5 October 2018

DOI: 10.1103/PhysRevLett.121.143902

http://dx.doi.org/10.1103/PhysRevLett.121.143902


Wannier representation of intraband high-order harmonic generation

F. Catoire∗ and H. Bachau
Centre des Lasers Intenses et Applications CNRS-CEA-Univsersité de Bordeaux,
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We investigate the harmonic generation induced by the interaction of a mid-IR laser field with
a solid target. The harmonic spectra is composed of the contribution of two processes interpreted
as interband and intraband transitions. The interband process corresponds to the recombination
from an upper band, populated during the laser interaction, to a lower band. The intraband process
originates from nonlinear processes of the current in individual bands. In this Letter, we develop a
theory based on Wannier states and reveal in depth the underlying physics of intraband dynamics.
In particular, this approach highlights the determinant role of transitions between different lattice
wells. Furthermore our approach provides quantitative predictions concerning high-order harmonic
energy cutoffs, harmonic yields and emission times.

High-order-harmonic generation (HHG) has first been
observed in atoms and theoretically described by the so-
called three-step model [1–3]. First, an electron wave
packet is released into the continuum near the maximum
of the linearly polarized IR laser electric field. The subse-
quent wave packet evolves under the influence of the oscil-
lating laser field and thus acquires kinetic energy. Finally,
as the electric field reverses its direction, the wave packet
has a probability to come back in the vicinity of the par-
ent ion and to recombine emitting the energy gained as a
photon in the UV-XUV range. From semi-classical anal-
ysis the energy gained at recombination spans from 0 to
a maximum of 3.17Up leading to a cut-off in the har-
monic spectra. The ponderomotive energy Up is given
by Up = I

4ω2

0

which is expressed in atomic units with I

the peak laser intensity and ω0 the laser frequency. The
harmonic spectra is composed of two regions (i) one for
photon energies below 3.17Up+Ip (with Ip the ionization
potential) is called plateau. It presents a rather constant
yield as a function of harmonic order and (ii) harmonics
having higher energies for which a fast yield decrease with
increasing order is observed. The so-called harmonic cut-
off energy then evolves linearly with the peak intensity
I. The semi-classical description of HHG also allows for
distinguishing two classes of trajectories in the plateau:
the short and long trajectories named after their respec-
tive excursion time (from ionization to recombination) in
the continuum [3]. The inherent process of HHG makes
it a unique tool for ultrashort pulses generation (down
to attoseconds) [4–6], time-resolved dynamics studies us-
ing the common pump-probe scheme [7–9] and molecular
orbitals tomography ([10–12] and references therein).

Recent experimental investigations of HHG in solid
targets showed drastically different behavior as compared
to their gas counterparts. In particular, the evolution of
the cutoff, which is expected to be proportional to the
laser peak intensity (I), was measured to scale linearly
with the electric peak amplitude of the drive laser (E)

[13]. The experiments were performed using a ZnO crys-
tal at a central frequency of 3.25µm. In [13] the authors
model the HHG in solid by considering the classical mo-
tion on a single band and they showed that the calcu-
lated current could in principle exhibit the linear scaling
of the harmonic cutoff with the amplitude of the electric
field. The HHG in solid dielectrics distinguishes between
the so-called intra- and interband ultrafast electron dy-
namics [14]. In [15–17], the authors non-ambiguously
attributed the origin of HHG in a ZnO solid interact-
ing with a laser of 3.76µm wavelength to interband pro-
cess, while for longer wavelengths (THz regime) the in-
traband dynamics dominates when the harmonics slip
below the band-gap energy [18, 19]. Intra- and inter-
band mechanisms in HHG have been theoretically dis-
criminated in [20] where the Houston states [21] basis
has been used. The mechanisms underlying interband
HHG are now well understood and in particular the de-
pendence of the cutoff energy with the laser field ampli-
tude has been extracted from semi-classical analysis [16]
or solving the time-dependent Schrödinger equation [22].
Here it is worth noticing that the use of Wannier func-
tions allows to assess the contribution of the lattice wells
to the HHG interband processes [23]. In particular, it
was demonstrated that the initial wave function, which
is promoted to excited band, is experiencing a spread of
the wave packet and finally has a chance to come back
on the same Wannier state, which is the most likely pro-
cess for low-order harmonics. In this work, we exam-
ine the HHG in bulk crystals assuming that single active
electron processes dominate the HHG. We will concen-
trate more specifically on the contribution of intraband
processes described using the Houston states which are
themselves expanded on the basis of Wannier states [24].
The purpose of this Letter is to bring new physical in-
sights into intraband process and to derive quantitative
predictions of the HHG spectra features.

The laser-solid dynamics will be studied for linearly
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polarized field. Consequently, as it is extensively done
for atomic and molecular system with a good success,
we will use a one-dimensional approach. The potential
describing the target V (x) is modeled by a spatial peri-
odic function of periodicity a so that V (x + a) = V (x).
In the static view point, one obtains the different bands
describing the system noted Em(k) by solving the secu-
lar equation. Here, k is the wave vector which lies in
the Brillouin zone given by [−π/a, π/a] of the reciprocal
lattice. The interband HHG induced by the laser interac-
tion, excites to higher bands portion of the ground state
wave packet as also identified for the photoemission in
solids [25]. The intraband dynamics is described using
the formalism presented in [20] employing the Houston
states. The current associated with the intraband pro-
cess on band m is given by [26]:

jrad(t) =
∂Em(p)

∂p

∣

∣

p=k(t)
(1)

with k(t) = A(t) imposed by the spatial periodicity of the
lattice and with Em(p) being the relation dispersion of
the band under consideration [27]. The vector potential

A(t) is related to the electric field by E(t) = −∂A(t)
∂t .

In the case of a relation dispersion expressed as Em(k) =
Em,0+Em,1cos(ka) and a vector potential given by A(t) =
A0sin(ω0t), the current is written:

jrad(t) = −iaEm,1

∑

oddn

Jn(
ωB

ω0
)einω0t (2)

with n being an odd integer. Jn is the Bessel function
of order n and ωB is the Bloch frequency defined by
ωB = aE0. E0 is the field amplitude which relates to the
vector potential amplitude by E0 = A0ω0. The radiation
is then composed of odd harmonics of the laser frequency.
The yield of the nth harmonic is given by |aEm,1Jn(

ω0

ωB

)|2.
Despite the fact that an analytical expression of the am-
plitude of a given harmonic generated by an intraband
process is obtained, a clear physical process is missing. In
particular, processes such as recombination invoking en-
ergy conservation at a given momentum k cannot clearly
be defined. Moreover this model do not provide a clear
distinction between what could appear as a plateau and
a cut-off. As importantly, it does not indicate the exis-
tence or the nonexistence of short and long trajectories
as defined for atomic and molecular targets and more
generally does not provide any time information.
The purpose of this work is to give a clear physical pic-

ture answering the previous questions. To do so Eq. (1) is
reformulated by means of the Wannier state representa-
tion of the wave function. Despite the fact that Wannier
states are not eigenstates of the field-free Hamiltonian, it
is a convenient basis for the interpretation of well to well
transitions. In the above cited work [23], the model is

based on the SFA approach and used for describing the
interband process. The full wave function is split into the
contribution of an unperturbed ground state (using the
Wannier expansion) and a continuum part associated to
the upper band. Here we use the Wannier basis in or-
der to express the adiabatically modified wave function
of a given band to investigate the intraband harmonic
process. The eigenstate defined by the band n under
consideration for a given momentum k, noted ϕn,k(x), is
then given by [28]:

ϕn,k(x) =

√

a

2π

∑

l

wl(x)eilka , (3)

with wl(x) = w(x − la) being the Wannier function
of index l associated with the band n in the field-
free case. Keeping in mind that the calculations re-
fer to a single band n, ϕn,k(x) will be noticed ϕk(x)
in the following. The Wannier function w(x − la) =
√

a
2π

´

BZ dgϕg(x)e
−ilga is a function of space localized

on the site x = la. The integration is performed over
the Brillouin zone (BZ). In [28], it has been shown that
the Wannier function presents an exponential decrease of
the amplitude of the wave function as |x − la| becomes
large. The current jrad(t) obtained on the Houston basis
is given by jrad(t) =< ϕk(t)(x)|p̂|ϕk(t)(x) > with p̂ the
momentum operator [20, 26]. Introducing the Wannier
expansion of the Houston states, the current associated
with the intraband HHG is given by:

jrad(t) =
∑

∆l

O∆le
i∆lk0aei∆laA(t), (4)

where O∆l =
∑

l < wl+∆l(x)|p̂|wl(x) > is the dipole ma-
trix element between Wannier states which depends only
on ∆l and is a decreasing function of ∆l. The O∆l coef-
ficient can also be expressed by means of the dispersion
relation. Therefore O∆l only depends on the structure of
the band and thus can be viewed as a structural coeffi-
cient. k0 is the initial momentum defined by the initial
eigenstate. The Wannier states are the result of an in-
tegration over the whole Brillouin zone and are indepen-
dent on k0 which only affects the phase coefficient of the
Bloch state expansion on the Wannier state. In partic-
ular, the dipole matrix elements do not depends on k0.
Hereafter, we choose k0 = 0 for the sake of simplicity.
Defining the vector potential A(t) = A0sin(ω0t) and us-
ing the Bessel expansion, one retrieves the expression of
the current for a given harmonic order n:

j̃rad(n) =
∑

∆l

O∆lJn(∆l
ωB

ω0
). (5)

This equation is a generalization of Eq. (2) for any dis-
persion relation of a given band. Alternatively, Eq. (5)
can be expressed as follows:
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j̃rad(n) =
∑

∆l

O∆l

ˆ

dteiS(t), (6)

with S(t) = −nω0t+∆laA(t). S(t) is assimilated to an
action term. We note that this term is independent of
the band considered and that the band structure impacts
only the O∆l coefficient. This equation can be solved us-
ing the saddle point approximation leading to the saddle
point condition ∂S

∂t = 0 where the action phase remains
stationary. The latter equation is re-casted as:

cos(ω0ts) =
nω0

∆lωB
= γ (7)

Figure 1. (Color online) Schematic of the physical process
leading to intraband HHG. The hopping from well l to l + 1
occurs at the time for which the diabatic Bloch frequency
ω̃B(ts) equals the energy of harmonic n.

where ωB = E0a is the Bloch frequency as defined ear-
lier. Eq. (7) can also be written ∆lE0acos(ω0ts) =
∆lω̃B(ts) = nω0 which can be easily interpreted since
the well of index l has a Stark shifted energy provided
by the quantity laE(t) in the presence of the field. If
one considers the hopping from the well indexed by l
to the neighbor well indexed by l + ∆l, then the equa-
tion ∆lω̃B(ts) = nω0 corresponds to the energy conser-
vation of the transition, where the instantaneous Bloch
frequency ω̃B(ts) = E0acos(ω0ts) is defined. The Figure
(1) sketches this hopping process. Note that the hopping
occurs for all wells at the same time, making the wells in-
distinguishable. Only the hopping process characterized
by a given ∆l can be discriminated in the HHG spectra.
From Eq. (7), two regimes can be defined, (i) - when
γ < 1 for which the saddle point solution ts is real, and
(ii) - when γ > 1 for which the saddle point solutions are
purely imaginary. The regime transition occurs when
γ = 1 corresponding to a threshold harmonic order given
by nc =

∆lωB

ω0

. In Fig. (2) we show the harmonic spectra
comparing the yield obtained from the saddle point anal-
ysis and using the analytical solution given by Eq. (5)

based on the Bessel function expansion. The calculation
have been performed so that Oj = δj,∆l

in order to get
rid of the structural contributions and to discriminate
the dynamics of the process.
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Figure 2. (Color online) Plot of the harmonic yield as a func-
tion of harmonic order. The laser condition are a peak inten-
sity of 3.5 TW/cm2, a central frequency of 4µm. The pulse
is assumed infinite in time. The calculation have been per-
formed by the saddle point analysis given by Eq.(7) (full black
curve referred as SDP) and using the analytical formula given
by Eq. (5)(color dashed curves). The hopping form the well l
to l+1, l+2 and l+3 have been presented. Calculations have
been performed for dispersion relation satisfying Oj = δj,∆l

.
The periodicity of the lattice a = 8 a.u. is chosen in order to
mimic the spatial periodicity of the ZnO lattice.

An good agreement for the harmonic yield is obtained be-
tween the analytical solution and the saddle point analy-
sis. As shown in the following, the saddle point analysis
provides additional information such as scaling law of the
HHG spectra features. When γ > 1 two purely imaginary
saddle point solutions can be defined per half cycle and
only one solution is physical (i.e. having a positive ac-
tion) leading to an exponential decrease of the yield with
increasing harmonic order. This is shown in Fig. (2)
where an exponential decrease of the yield is observed
for harmonic orders larger than the cut-off defined by
nc =

∆lωB

ω0

. Note that the cut-off harmonic depends lin-
early on the electric field as experimentally observed in
[13]. This is in contrast with the harmonic emission from
atomic systems for which the harmonic cut-off depends
linearly on the field intensity. The cut-off harmonic de-
pends also linearly on the wavelength of the driving field
as it was also observed from numerical analysis in [29].
We now examine more in detail the structure of the sad-
dle point solution ts defined by Eq. (7) when γ > 1.
Since the real part of ts is 0, the harmonics are all emit-
ted at the maximum of the laser field. On the other hand
when γ < 1 two solutions can be obtained leading to real
action terms of opposite sign. As a consequence the yield
can be defined by a cosine (or sine) function of the ac-
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tion which exhibits an oscillatory behavior as a function
of harmonic order as observed in Fig. (2).
In the context of isolated, short pulses generation two

important features are at play. On one hand the yield
from one harmonic to the next must remain rather con-
stant and the emission time should also be steady from
one harmonic to the next. HHG in solid satisfies the first
requirement and we now investigate the emission time
for intraband process. The time at which the harmonics
are emitted depends on harmonic order and also of the
hopping between the wells we are considering given by
the value of ∆l. In Fig. (3) we show the evolution of
the emission time normalized to a phase ω0Re(ts) as a
function of harmonic order and also of ∆l.
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Figure 3. (Color online) Plot of the real part of the saddle
point equation given by Eq. (7). The laser conditions are the
same as the ones given in Fig. (2).

We note from the harmonics emission time, that harmon-
ics belonging to the cut-off are all emitted in phase at the
maximum of the electric field. This is in contrast with
atomic and molecular case for which the recombination
time close to the cut-off corresponding to the zero of the
electric field. On the other hand the emission times of
harmonics generated in the plateau are quite dispersed
going from the phase π/2 (0 of the field) to 0 (maximum
of the field). In particular, the lower harmonic orders
are emitted close the 0 of the electric field which differs
from atomic and molecular systems for which the phase
spanned by the emission time is quite small (less than
0.3 rad) [30]. From our model we can extract the chirp
associated to the intraband harmonic process. We can

define this chirp as the ratio β = ∆t
∆ω ≈ π/2

ω2

0
nc

= π
2ω0∆lωB

(see Fig. 3). This coefficient is then proportional to the
ratio of the driving laser wavelength and electric field
amplitude. Note that for atomic systems, this coefficient
has been shown to be inversely proportional of the peak
intensity [31]. Here it is worth noticing that our method,
based on saddle point analysis, naturally leads to the
time-frequency information for the whole harmonic spec-

trum. This is of particular interest since this informa-
tion may be difficult to obtain using the usual Gabor or
wavelet transforms, especially for low order harmonics
[20].

Another feature which can be extracted from the sad-
dle point analysis is the yield of the harmonics. It has
been shown experimentally that the yield for rather low
harmonics order follows the law In with n the harmonic
order and I the peak intensity of the driving laser [13].
This scaling law is valid for harmonics belonging to the
cut-off. For harmonics belonging to the plateau, experi-
mental results show an increase of the yield proportional
to the intensity. From our model, the harmonic yield can
be obtained by the formula W ∝ exp(−2ImSs), with Ss

the action calculated at the saddle point [32, 33]. We then
obtain an harmonic yield which follows the law In for har-
monics in the cut-off. We also get a yield of ω−2n

0 for the
dependences of the harmonics in the cut-off as a function
of the central frequency of the driving laser. This is an
interesting feature explaining why most of HHG in solid
are observed for long wavelengths, which goes along with
the fact that the resulting harmonics are not absorbed
after the propagation threw few mono-layers of the solid.
For harmonics generated in the plateau, the action Ss

is purely real and the yield is independent on n, I and
ω0. The harmonic yield dependence as a function of ∆l is
more subtle to predict since it originates from two contri-
butions. The first contribution comes from the overlap
function O∆l which decreases with increasing ∆l. The
second contribution stems from the action and we show
that the yield issued from the action is proportional to
∆l2n. These two effects go in opposite directions which
makes the yield as a function of ∆l a distribution de-
pending on the band structure. Finally as it was stated
in the introduction, the highest contribution of the inter-
band HHG stems from ∆l = 0 in contrast with intraband
process which contribution is 0 for symmetry reasons.

In conclusion, we proposed to use the Wannier analy-
sis for interpreting the physics of the intraband harmonic
process. We have shown that an intraband harmonic
process cannot simply be interpreted as transitions at a
given k in the Brillouin zone as it was demonstrated for
the interband transition. The Wannier picture is then
necessary to invoke transition is space interpreted as hop-
ping from one well to the neighbor wells. In particular
we show that the intraband harmonic generation occurs
when the diabatic Bloch frequency equals the energy of
a harmonic photon. Using the saddle point analysis, we
have shown that the cut-off harmonic, the yield as a func-
tion of intensity and central frequency of the driving laser
reproduces the behavior observed experimentally for low
order harmonics. We demonstrated that the contribution
from band structure given by the dispersion relation, and
the dynamics of the interaction can be disentangled. In
particular we show that the dynamics is only driven by
the periodicity of the lattice and by the laser parameters.
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Finally the dependence of the yield to ∆l, correspond-
ing to the hopping between wells, is very different from
inter- to intraband processes. The interband HHG shows
a most likely contribution from ∆l = 0 while intraband
dynamics mostly involves transitions between different
wells (∆l 6= 0). The intraband dynamics exhibits a cut-
off which depends on ∆l and each channel which can be
studied independently then leading to band structure in-
formation.
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