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The law of reflection states that smooth surfaces reflect waves specularly, thereby acting as a
mirror. This law is insensitive to disorder as long as its length scale is smaller than the wavelength.
Monolayer graphene exhibits a linear dispersion at low energies and consequently a diverging Fermi
wavelength. We present proof that for a disordered graphene boundary, resonant scattering off
disordered edge modes results in diffusive electron reflection even when the electron wavelength is
much longer than the disorder correlation length. Using numerical quantum transport simulations,
we demonstrate that this phenomenon can be observed as a nonlocal conductance dip in a magnetic
focusing experiment.

Introduction. The law of reflection is a basic physical
phenomenon in geometric optics. As long as the surface
of a mirror is flat on the scale of the wavelength, a mir-
ror reflects incoming waves specularly. In the opposite
limit when the surface is rough, reflection is diffusive and
an incident wave scatters into a combination of many
reflected waves with different angles. This picture applies
to all kinds of wave reflection, including sound waves and
particle waves in quantum systems. The phenomenon
has been extensively investigated both theoretically and
experimentally in the past, e.g., in order to understand
sea-clutter in radar [1] as well as a method to measure
surface roughness [2].

Graphene [3, 4] is a gapless semiconductor with a linear
dispersion relation near the charge neutrality point, and
therefore a diverging Fermi wavelength. Modern tech-
niques allow for the creation of graphene monolayers of
high mobility, with mean free paths of tens of microns
[5–8]. This makes it possible to realize devices in which
carriers propagate ballistically over mesoscopic distances,
facilitating the design of electron optics experiments [9–
11]. For example, recent experiments employ perpendicu-
lar magnetic fields to demonstrate snaking trajectories in
graphene p-n junctions [12, 13], or the magnetic focusing
of carriers through cyclotron motion [14]. The latter tests
the classical skipping orbit picture of carrier propagation
along a boundary [15], and using a collimator to focus a
narrow beam of electrons with a small angular spread en-
hances the focusing resolution [16]. The high mobility in
the bulk together with a large Fermi wavelength suggest
that graphene is a promising medium for the design of
advanced electron optics and testing the law of reflection,
cf. Fig. 1.

Graphene edges are rough due to imperfect lattice termi-
nation or hydrogen passivation of dangling bonds [17, 18].
Boundary roughness may adversely affect device perfor-
mance [19–22]. On the other hand close to the charge
neutrality point the Fermi wavelength in graphene di-

FIG. 1. Sketch of the setup. Electrons injected at the source (S)
follow cyclotron trajectories due to the perpendicular magnetic
field B = Bẑ, forming a hot spot at the boundary where most
trajectories scatter. If the trajectories specularly reflect at the
boundary and the separation Wx between the midpoints of
the source and the drain (D) matches two cyclotron diameters,
most trajectories enter the drain, and a focusing peak manifests
in the nonlocal conductance. The focusing is evident in the
classical cyclotron trajectory of an electron normally incident
from S at the Fermi level (solid curves), and in the computed
current distribution that is superimposed on the device (flow
lines, colored background). A side gate VG controls the average
potential at the disordered boundary (dotted line), and allows
to tune between regimes of specular and diffusive reflection
(see main text). In the diffusive regime, electrons scatter into
random angles as shown schematically with the dashed lines,
resulting in a drop in the focusing peak conductance compared
to the regime of specular reflection. The graphene sheet is
grounded, such that current due to off-resonance trajectories
may drain away to the sides (open boundaries).

verges, and by analogy with optics, one may expect that
the law of reflection holds and suppresses the diffusive
boundary scattering.

In this Letter, we study how the microscopic boundary
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properties influence electron reflection off a graphene
boundary. Most boundaries result in the self-averaging
of the boundary disorder, and therefore obey the law
of reflection. However, we find that, due to resonant
scattering, electrons are reflected diffusively regardless of
the Fermi wavelength when the disorder-broadened edge
states overlap with E = 0. As a result, in this situation,
the boundary of graphene never acts as a mirror and thus
breaks the law of reflection. We demonstrate that this
phenomenon can be observed as a dip in the nonlocal
conductance in a magnetic focusing setup (see Fig. 1).
We confirm our predictions by numerical simulations.

Reflection at a disordered boundary. To demonstrate
the breakdown of the law of reflection, we first analyze
scattering at the edge of a semi-infinite graphene sheet.
We consider a zigzag edge, since the zigzag boundary
condition applies to generic lattice terminations [23]. To
begin with, we neglect intervalley scattering to simplify
the analytical derivation, and focus on the single valley
Dirac Hamiltonian

H = vF σ · p, (1)

with vF the Fermi velocity, σ = (σx, σy)
T the vector of

Pauli matrices in the (sublattice) pseudospin space, and
p the momentum. We later verify the validity of our
conclusions with tight-binding calculations that include
intervalley scattering. We introduce edge disorder by ran-
domly sampling the most general single-valley boundary
condition [23–25] over the edge, such that the boundary
condition for the wave function reads

ψ(x, y = 0) = [cos θ(x)σz + sin θ(x)σx]ψ(x, y = 0), (2)

where disorder enters through the position-dependent
parameter θ, and θ = 0 gives a zigzag segment. We
take θ(x) to follow a Gaussian distribution with mean
value E[θ(x)] = θ0 and covariance Cov[θ(x), θ(x′)] =

s2θe
−π(x−x′)2/d2 , with d the correlation length. In this

work, E[A] is the statistical average of A over the disor-
dered boundary, and the corresponding variance Var(A).
The boundary condition (2) applies to different micro-
scopic origins of disorder, such as hydrogen passivation
of dangling bonds [23] or edge reconstruction [26].

To solve the scattering problem, we introduce periodic
boundary conditions parallel to the boundary with period
L, such that the momentum k‖ ∈ {2πn/L | n ∈ Z}
is conserved. At the Fermi energy EF , the disordered
boundary scatters an incident mode ψin

k‖
into the outgoing

modes ψout
k′‖

. The scattering state is

ψk‖ = ψin
k‖

+
∑
k′‖

ψout
k′‖
Sk′‖k‖ , (3)

where modes with k‖ > kF are evanescent but others prop-
agating, with kF the Fermi momentum, and Sk′‖k‖ the re-
flection amplitudes. An outgoing propagating mode moves

away from the edge at the angle ϕk‖ = arctan(v‖/v⊥) rela-
tive to the boundary normal, with v‖ and v⊥ the velocities
along and perpendicular to the boundary. For the inci-
dent propagating mode at k‖, the quantum mechanical
average reflection angle is therefore

〈ϕk‖〉 =
∑
k′‖

ϕk′‖ |Sk′‖k‖ |
2, (4)

where the sum is limited to propagating modes, and
|Sk′‖k‖ |

2 is the reflection probability into the outgoing
mode at k′‖. An incident mode reflects specularly if
Sk′‖k‖ = δk′‖k‖ , but diffusively if it scatters into multiple
angles, and the variance σ2(ϕk‖) is therefore finite for the
latter. If N modes are incident, diffusiveness manifests in
a finite mode-averaged variance σ2(ϕ) =

∑
k‖
σ2(ϕk‖)/N ,

or its statistical average E[σ2(ϕ)] over the disordered
boundary. If λF � L, then σ2(ϕ) automatically in-
cludes the statistical average E[σ2(ϕ)], because the in-
cident waves sample multiple different segments of the
boundary within each period.

The scattering problem simplifies at the charge neutral-
ity point EF = 0, where only two propagating modes are
active, one incident and one outgoing, both with k‖ = 0.
The scattering matrix relating the propagating modes is
therefore a phase factor eiφ, with φ the scattering phase,
and the quantum mechanical averages of the preceding
paragraph are not necessary. We expect diffusiveness to
manifest as a finite variance Var(φ), and have verified
this numerically. To compute φ, we impose the boundary
condition (2) on the scattering state (3).
If θ0 is nonzero and sθ � θ0, φ follows a Gaussian

distribution [27] with the mean

E[φ]
L�d
= − θ0 +

s2θ
2 sin(θ0)

+O
(
s3θ
θ30

)
(5)

and variance

Var(φ) =
d

L
s2θ +O

(
s3θ
θ30

)
. (6)

Thus E[φ] is given by θ0, with the addition of a random
walk-like drift term proportional to s2θ. In addition, Var(φ)
increases with s2θ, but increasing the boundary length
suppresses it as 1/L. In the limit L → ∞ reflection is
thus completely specular, with a fixed scattering phase
φ. This algebraic decay of diffusive scattering resembles
a classical optical mirror [2].

If θ0 = 0, surprisingly there is no suppression of Var(φ)
with L. Rather, we find [27] that tanφ follows a Cauchy
distribution f(tanφ) = γ/π(tan2 φ + γ2) with E[φ] = 0,
Var(φ) ≈ 2.2 sθ linear in sθ instead of quadratic, and
γ ≈ 0.8 sθ obtained numerically. In this case, the law of
reflection therefore breaks down and scattering is always
diffusive. The distribution of the scattering phase follows
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the Cauchy distribution also when the disorder is non-
Gaussian and even asymmetric, as long as θ0 is sufficiently
small. For an asymmetric distribution, the value of γ/sθ
weakly depends on higher cumulants of the distribution
of θ(x).
Generic graphene boundaries support bands of edge

states with a linear dispersion [23, 26]. Because the matrix
element between the edge state and the edge disorder is
inversely proportional to the spatial extent of the edge
state, the disorder broadening of these edge states is
proportional to the momentum along the boundary [see
Fig. 2(c,d)]. In other words linearly dispersing edge states
turn into disorder-broadened bands with both the average
velocity and the bandwidth proportional to k‖. When
these bands overlap with E = 0 they serve as a source of
resonant scattering responsible for the breakdown of the
law of reflection. Indeed, we find that the condition for
diffusive scattering occurs for any θ0 . sθ.

To include intervalley scattering, we compute the scat-
tering phase at the charge neutrality point using the
nearest neighbour tight-binding model of graphene, with
random on-site disorder in the outermost row of atoms
taken from a Gaussian distribution with mean Vd and
variance s2d [27]. The results, shown in Fig. 2(b), agree
with the single valley prediction of the Dirac equation up
to numerical prefactors.
To extend our analysis to nonzero EF , we employ the

tight-binding model with on-site disorder to study the
reflection angle ϕ at the disordered boundary numerically
using Kwant [28]. The disordered edge band now resides
at the energy Vd, as Figs. 2(c) and (d) show. Fig. 2(a,b)
confirm that σ2(ϕ) ≈ Var(φ) at E = 0. The law of
reflection is broken for all sd at Vd = EF and Var(φ)
increases linearly with sd, independent of λF . Further,
the reflection becomes specular for sd . |Vd − EF |. As
Fig. 2(b) shows, Var(φ) [σ2(ϕ)] increases quadratically
with the disorder strength sd, but decays as 1/L [1/λF ]
(Fig. 2(a)) when the Fermi wavelength becomes large
compared to the lattice constant a, such that scattering
is predominantly specular. However, for sd & |Vd − EF |
reflection becomes diffusive, and moving Vd closer to EF
[Fig. 2(b)] shifts the transition from specular to diffusive
reflection to smaller sd.
Experimental detection. Any experiment that is sensi-

tive to the microscopic properties of a disordered boundary
will detect the breakdown of the law of reflection if the
disordered edge band overlaps with the Fermi level. We
propose to search for a transport signature of the break-
down of the law of reflection in the magnetic focusing
experiment sketched in Fig. 1. The idea is to study the
reflection of ballistic cyclotron trajectories in a magnetic
field B off a graphene edge [9, 14, 15]. The use of a
collimator could improve such an experiment [16].
Magnetic focusing refers to the appearance of peaks

in the nonlocal conductance between the source and the
drain when a voltage is applied between the source and
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FIG. 2. (a) Solid lines: Var(φ) at the Dirac points (EF = 0)
as a function of the boundary length L, for a disorder strength
sd = 0.05t obtained from the tight-binding model. Markers:
σ2(ϕ) at finite EF , averaged over all incoming modes and 102

disorder configurations, as a function of the Fermi wavelength
λF for the same disorder strength, obtained numerically for
a semi-infinite graphene sheet with a boundary of length
L = 300a. The values chosen for λF =

√
3πta/EF correspond

to EF ranging from 0.2t to 0.03t. (b) Same as (a), as a function
of the disorder strength s2d, for a value of 2πL ≈ 27a [λF ≈ 27a,
EF = 0.2t]. The dotted line indicates the value of sd used in
(a). For Vd = EF the variances of both the scattering phase
at EF = 0 and the reflection angle at EF > 0 increase linearly
with sd, independent of the Fermi wavelength, exhibiting
the breakdown of the law of reflection. For |Vd − EF | & sd,
Var(φ) [σ2(ϕ)] decays with increasing L [λF ] as 1/L [1/λF ]
and increases quadratically with the disorder strength [as given
by Eq. (6)]. Reflection is thus specular, but becomes diffusive
for |Vd − EF | . sd. Setting Vd closer to EF moves transition
between the regimes of specular and diffusive reflection to
smaller sd. This is because of the overlap of EF with the
disorder-broadened edge band. (c, d) Momentum-resolved
density of states at the disordered zigzag edge of a semi-infinite
graphene sheet with a boundary of length L = 300a. A band
of edge states with bandwidth ∝ sd = 0.05t extends between
the Dirac cones, residing mostly at energy Vd, with Vd = 0.03t
in (c) and Vd = 0.2t in (d) [dashed lines].

the grounded ribbon, cf. Fig. 1. There is an increased
probability for electrons to end up in the drain whenever
the separation Wx between source and drain matches
an integer multiple of the cyclotron diameter 2rc, where
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FIG. 3. (a) Conductance as a function of Fermi energy and
magnetic field showing the first 4 magnetic focusing peaks for
the device sketched in Fig. 1 in the absence of edge disorder
and with VG = 0. Superimposed are the predicted locations
of the focusing peaks (dotted lines), 1 ≤ p ≤ 4 from left to
right across the diagonal. The color scale is linear and ranges
from about 4e2/h (dark) to 28e2/h (bright). (b) Conductance
around the p = 2 focusing peak at EF = 0.093 eV [dashed
line in (a)] versus gate voltage. We include disorder with
Vd = 0.062 eV and sd = 0.047 eV in the first N = 6 rows next
to the boundary. Reflection at the boundary is specular and
the conductance smooth in VG, except for a dip when the dis-
ordered edge band overlaps with the Fermi level, and reflection
becomes diffusive. (c) Line cut from (b) at B = 0.256T with
the predicted voltage value for the dip marked. Within the
dip, the conductance exhibits fluctuations dependent on the
particular disorder configuration, that are washed out by dis-
order averaging in (d). We assume the scaling factor s = 9 in
the tight-binding model, such that Wx = 1.6 µm, Wy = 1 µm
and WL = 0.2 µm.

rc = ~kF /eB is the cyclotron radius with kF the Fermi
momentum, ~ the reduced Planck constant, and e the
elementary charge. Due to the linear dispersion near
the charge neutrality point in graphene, kF = EF /~vF
is linear in EF , such that focusing peaks appear at the
magnetic fields Bfn = 2nEF /evFWx, n ∈ N. For the setup
in Fig. 1 but with a clean, specularly reflecting system
edge, Fig. 3(a) shows a map of the first few focusing
conductance peaks with their predicted locations marked.
At resonance p, the electron beam reflects specularly p−1
times at the system edge before exiting into the drain,
as Fig. 1 demonstrates for p = 2. On the other hand, if
reflection from the boundary is diffusive, the electrons
scatter into random angles off the boundary, which in
general no longer result in cyclotron trajectories that are
commensurate with the distance from the focus point at
the boundary to the drain. In comparison with the case
of specular reflection, the focusing beam at the drain is

therefore diminished for diffusive edge scattering, resulting
in a drop in the p > 1 conductance resonances. Because
the reflection is diffusive when the disordered edge band
overlaps with the Fermi level, by using a side gate (see
Fig. 1) to tune the average potential at the disordered
boundary, it is therefore possible to observe signatures of
the breakdown of the law of reflection in the form of a
conductance drop at a focusing peak.
To verify our prediction, we perform numerical simu-

lations of the graphene focusing device with a side gate
sketched in Fig. 1. We implement the tight-binding model
for graphene in Kwant [28] and include the magnetic field
via a Peierls substitution. We apply a random uniformly
distributed onsite potential with mean Vd and variance s2d
to the first several rows of atoms adjacent to the system
edge. We simulate the effect of a side gate by applying an
extra potential with amplitude VG exponentially decaying
away from the sample edge on a length scale compara-
ble to the size of the disordered region. Away from the
charge neutrality point, we expect peak diffusive edge
scattering to occur when the average potential by the
boundary matches the Fermi energy. The relevant scales
for our simulations are the hopping t, the graphene lattice
constant a = 2.46Å, and the magnetic flux Φ ∝ Ba2 per
unit cell. Scaling the tight-binding Hamiltonian with a
scaling factor s [29] by reinterpreting t/s ≡ t, sa ≡ a
and B/s2 ≡ B such that Φ is unchanged by the scaling,
our simulations apply to graphene devices of realistic and
experimentally realizable dimensions [14, 15]. Note that
the onsite disorder correlation length is not scale invari-
ant, and the disorder thus correlates s lattice sites in the
original model.

Tuning the average potential at the disordered system
edge by varying the side gate VG reveals a clear dip in
the conductance Fig. 3(b) around the second focusing
resonance p = 2, which is absent when no edge disorder
is included [27]. Outside the dip the conductance only
changes weakly with VG, which is the expected behavior
for a clean specularly reflecting boundary. Here, the first
N = 6 rows of sites adjacent to the edge are disordered,
and the extent of the disordered region into the graphene
sheet thus approximately 2.1a � λF ≈ 18a, such that
the length scales are consistent with specular reflection.
The conductance fluctuates erratically within the dip, as
the line cut Fig. 3(c) taken from Fig. 3(b) at B = 0.256T
shows. These are universal conductance oscillations par-
ticular to an individual disorder configuration. They are
washed out by disorder averaging as Fig. 3(d) shows, re-
vealing an omnipresent conductance dip. Furthermore,
the conductance dip appears when the disordered edge
band overlaps with EF , which is the condition for the
breakdown of the law of reflection, with the VG that aligns
the band with EF marked in Figs. 3(c) and (d).
Conclusion and discussion. Our analysis of scatter-

ing at a disordered graphene boundary reveals a regime
where specular reflection is suppressed in favor of diffusive



5

scattering. This counterintuitive conclusion holds even
when conventional wisdom dictates that specular reflec-
tion should dominate and the boundary should act as a
mirror, namely when a boundary is rough on a length
scale smaller than the Fermi wavelength. The origin of
this breakdown of the law of reflection is resonant scat-
tering of the electron waves from a linear superposition
of localized boundary states. Our calculations show that
this phenomenon is detectable in transverse magnetic
focusing experiments, by employing a side gate to tune
the average potential at the boundary. In these experi-
ments the breakdown of specular reflection manifests as
a dip in the nonlocal conductance at the second focus-
ing resonance. Because the zigzag boundary condition is
generic in graphene, we expect our results to apply to an
arbitrary termination direction, and to be insensitive to
microscopic details. We are thus confident that this effect
is experimentally observable in present day devices.
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638760, the Netherlands Organisation for Scientific Re-
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