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The two-dimensional oscillatory crack instability, experimentally observed in a class of brittle ma-
terials under strongly dynamic conditions, has been recently reproduced by a nonlinear phase-field
fracture theory. Here we highlight the universal character of this instability by showing that it is
present in materials exhibiting widely different near crack tip elastic nonlinearity, and by demonstrat-
ing that the oscillations wavelength follows a universal master curve in terms of dissipation-related
and nonlinear elastic intrinsic length scales. Moreover, we show that upon increasing the driving
force for fracture, a high-velocity tip-splitting instability emerges, as experimentally demonstrated.
The analysis culminates in a comprehensive stability phase-diagram of two-dimensional brittle frac-
ture, whose salient properties and topology are independent of the form of near tip nonlinearity.

Cracks mediate materials failure and hence under-
standing their spatiotemporal dynamics is of prime fun-
damental and practical importance [1–5]. It is experi-
mentally well-established that cracks in brittle materi-
als undergo various symmetry-breaking instabilities [5–
13]. Most notably, straight cracks in three-dimensional
(3D) samples of isotropic materials universally undergo
a micro-branching instability, where short-lived micro-
cracks branch out sideways from the main crack, at low
to medium propagation velocities [5–11]. Recent exper-
iments performed on a class of neo-Hookean (NH) — a
nonlinear extension of linear, Hookean elasticity — brit-
tle materials revealed that upon reducing the system’s
thickness, approaching the two-dimensional (2D) limit,
the micro-branching instability is severely suppressed; as
a result, straight cracks accelerate to unprecedentedly
high velocities, approaching the relevant sonic velocity,
until they undergo an oscillatory instability [4, 12, 13].

Our understanding of these dynamic fracture instabil-
ities is far from complete. In particular, the classical the-
ory of brittle cracks — Linear Elastic Fracture Mechan-
ics (LEFM) [1, 2] — intrinsically falls short of explaining
these instabilities [4, 14, 15]. Recently, integrating theo-
retical ideas about the existence and importance of elastic
nonlinearity near cracks tips [4, 13, 16–19] into a phase-
field fracture theory, the 2D oscillatory instability in brit-
tle NH materials has been quantitatively reproduced in
large-scale simulations for the first time [14], cf. Fig. 1a.
The theory has shown, in agreement with experiments,
that the wavelength of oscillations scales linearly with an
intrinsic nonlinear elastic length scale, which does not ex-
ist in LEFM, hence explicitly demonstrating the failure
of the classical theory of brittle cracks.

This significant progress raised several pressing ques-
tions of fundamental importance. First, is the oscillatory
instability universal, i.e. observed in various brittle ma-
terials independently of the nature and form of near tip
elastic nonlinearity? Second, what are the minimal phys-
ical conditions for the existence of the oscillatory insta-
bility? Third, are there additional, previously undiscov-

FIG. 1. (a) A zoom in on the 2D oscillatory instability in a
phase-field simulation of brittle neo-Hookean (NH) materials
under tensile (mode I) loading [14]. The color code corre-
sponds to the normalized strain energy density and ξ is the
dissipation length. (b) The same, but for brittle Saint-Venant-
Kirchhoff (SVK) materials, see text and [20] for details. (c)
Examples of the normalized crack speed v/cs (cs is the shear
wave speed) vs. normalized crack propagation distance d/ξ
for SVK (top curve) and NH materials (bottom curve). The
onset of oscillations is marked by the horizontal dashed lines.
(d) The uniaxial stress σ (normalized by the shear modulus
µ) vs. strain ε for SVK (solid line) and NH materials (dashed
line), along with their linear approximation (dashed-dotted
line).
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ered instabilities in 2D dynamic fracture? Finally, can
one derive a comprehensive stability phase-diagram of
two-dimensional brittle fracture and if so, is it universal?
In this Letter, we extensively address these important
questions using theoretical considerations and large-scale
simulations in the framework of the recently developed
nonlinear phase-field theory of fracture [14].

This theory belongs to a broader class of diffuse-
interface approaches to fracture [21–26] that avoid the
difficulty of tracking the evolution of sharp crack surfaces,
and at the same time allow a self-consistent selection of
the crack’s velocity and path, which are far from being
understood in general. These properties emerge from the
dynamics of an auxiliary phase-field φ and its coupling
to other fields, which provide a mathematical machinery
that renders the fracture problem self-contained. In par-
ticular, it gives rise to a dissipation-related length scale ξ
and a fracture energy Γ(v) (the energy dissipated per unit
crack surface, where v is the crack propagation). The
smooth transition in space between the pristine (φ= 1)
and the fully broken (φ=0) states of the material is initi-
ated when the elastic strain energy functional estrain(H)
exceeds a threshold ec, where H = ∇u is the displace-
ment gradient tensor and u(x, y, t) is the displacement
vector field.

Unlike previous phase-field approaches [22, 23, 25],
the formulation in [14] maintains the wave speeds con-
stant inside the dissipation zone, thereby allowing cracks
to accelerate to unprecedentedly high velocities without
undergoing tip-splitting instabilities at marginally dy-
namic velocities [27, 28]. Moreover, estrain(H) is taken
to be nonlinear, introducing nonlinearity on a length ` in
the near vicinity of the crack tip, while the linear elas-
tic (quadratic) approximation to estrain(H) remains very
good on larger scales. Hence, this theory features an
intrinsic dissipation length ξ and intrinsic length ` as-
sociated with near tip elastic nonlinearity, which can be
independently varied.

The strain energy functional eNH
strain(H)= 1

2µ(tr(FTF )+
[det(F )]−2−3) of 2D incompressible NH materials [29],
where F = I+H (I is the identity tensor) and µ is the
shear modulus, has been shown [14] to quantitatively pre-
dict the experimentally observed oscillatory instability in
2D brittle polymeric elastomers under tensile (mode I)
loading conditions [4, 12, 13]. Most notably, the oscil-
lations (see example in Fig. 1a) emerge at a critical ve-
locity vc (see the lower horizontal dashed line in Fig. 1c)
and their wavelength follows λ=α ξ+β Γ0/µ (shown by
the squares in Fig. 2a), both in quantitative agreement
with experiments [13, 14]. Here α and β are dimension-
less numbers, ξ is the dissipation length defined above,
Γ0 ≡ Γ(v → 0) and Γ0/µ is proportional to the intrin-
sic nonlinear elastic length ` [4, 13, 17, 19]. eNH

strain is
of entropic origin, which is well-understood in terms of
the statistical thermodynamics of cross-linked polymer
chains [30].

To assess the generality of these results, our first goal
is to consider near tip elastic nonlinearity which is suffi-
ciently general, yet of qualitatively different physical ori-
gin and emerging properties compared to eNH

strain. To that
aim, we invoke the minimal elastic nonlinearity associ-
ated with the rotational invariance of isotropic materi-
als. That is, we use the rotationally-invariant (Green-
Lagrange) metric strain tensor E = 1

2 (FTF −I) = ε +
1
2 (HTH), instead of its widespread linear approximation
ε= 1

2 (H + HT ) [31]. When combined with constitutive
linearity, i.e. with a quadratic energy functional in which
the linearized strain measure ε is replaced by its nonlin-
ear rotationally-invariant counterpart E, we obtain

eSVK

strain(H)= 1
2 λ̃ tr2(E) + µ tr

(
E2

)
. (1)

This energy functional, corresponding to Saint-Venant-
Kirchhoff (SVK) materials [32], is constitutively identi-
cal to linearized Hookean elasticity (where λ̃ is the first
Lamé constant [31]), but features geometric nonlinearity
embedded inside E.

While materials typically feature constitutive nonlin-
earity in addition to geometric nonlinearity, they should
at least feature the latter, and hence Eq. (1) constitutes
the minimal possible elastic nonlinearity. eSVK

strain is not
only of a qualitatively different physical origin compared
to eNH

strain, but it also exhibits significantly different proper-
ties. In Fig. 1d, we plot the uniaxial tension response cor-
responding to the two functionals, in addition to their lin-
ear elastic approximation (the elastic constants are cho-
sen such that the latter is identical for both functionals).
We observe that eSVK

strain features a stronger nonlinearity
than eNH

strain and is of strain-stiffening nature, while the lat-
ter is of strain-softening nature. Do materials described
by eSVK

strain experience the same oscillatory instability as
those described by eNH

strain?

In Fig. 1b we present results of a large-scale numeri-
cal simulation of the nonlinear phase-field fracture the-
ory discussed above, using eSVK

strain (see simulation details
in [20]). An oscillatory instability that is strikingly simi-
lar to the oscillatory instability shown in Fig. 1a for brit-
tle NH materials is observed. The onset of instability, see
example in Fig. 1c (top curve), takes place at an ultra-
high critical velocity vc, whose normalized value is similar
to the one of brittle NH materials (bottom curve). The
fact that the oscillatory instability exists for widely differ-
ent forms of near crack tip elastic nonlinearity provides
a strong indication in favor of its universal nature. In
Fig. 2a, we present the oscillations wavelength of brittle
SVK materials demonstrating that it scales linearly with
Γ0/µ, λ= α ξ+β Γ0/µ, exactly as it does for brittle NH

materials, yet again supporting the universality of the os-
cillatory instability. Remarkably, while β is significantly
larger for brittle SVK materials compared to brittle NH

materials, α= 13 ± 1 is essentially identical for the two
classes of materials.
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FIG. 2. (a) The normalized oscillations wavelength λ/ξ vs. Γ0/µξ for SVK (circles), NH (squares) and truncated NH (diamonds)
materials. (b) The normalized nonlinear length `/ξ (` is defined in the text) vs. Γ0/µξ for SVK (circles) and NH (squares)
materials. (c) λ/ξ vs. `/ξ for SVK (circles) and NH (squares) materials. The lines are guides to the eye.

To address the apparent independence of α on the form
of near tip elastic nonlinearity and its physical impli-
cations, we consider yet another energy functional. In
selecting the latter, we aim at addressing also a differ-
ent question: Is the wavelength significantly affected by
strong elastic nonlinearity deep inside the near tip non-
linear elastic zone or mainly by weak elastic nonlinear-
ity, as predicted by the weakly nonlinear theory of frac-
ture [4, 15, 17]? To address these questions, we consider
the incompressible NH functional truncated to leading or-
der nonlinearity

eTNH

strain(H)/µ ' tr(ε2)+tr(ε)2− 1
2 tr(H)3− 3

2 tr(H) tr(H2)

− 1
8 tr(H)4+ 9

4 tr(H)2 tr(H2)+ 3
8 tr(H2)2+O(H5) . (2)

Unlike the weakly nonlinear theory of fracture, which is
an analytic perturbative theory that takes into account
only cubic nonlinearity in the energy, here we are looking
for global numerical solutions and hence should include
also quartic nonlinearity to ensure the well-posedness of
the global fracture problem [20].

Phase-field theory calculations with eTNH
strain of Eq. (2)

demonstrated the existence of an oscillatory instability
(not shown), whose wavelength is essentially indistin-
guishable from that of eNH

strain, as shown in Fig. 2a (di-
amonds). This result indicates that weak elastic non-
linearity controls the oscillatory instability and further
highlights the independence of α on the form of nonlin-
earity. The latter raises an intriguing possibility; if elastic
nonlinearity vanishes, `∝Γ0/µ→0, the results of Fig. 2a
imply that λ ≈ 13ξ. That is, the oscillatory instability
may exist in the absence of elastic nonlinearity, where
its wavelength is determined by the intrinsic dissipation
length ξ.

This possibility is quite intriguing because, if true, it
means that near tip elastic nonlinearity is not necessary
for the existence of the oscillatory instability, which can

alternatively inherit its characteristic length from the dis-
sipation zone. The extensive calculations that gave rise
to the wavelength λ in Fig. 2a, where the ratio Γ0/µ has
been reduced as much as possible within numerical limi-
tations, also showed that the amplitude of the oscillations
diminishes as `∝Γ0/µ is reduced. This observation might
support the possibility that the instability exists with
a finite wavelength and a vanishingly small amplitude
as elastic nonlinearity vanishes. Hence, the observation
in [14] in which no oscillatory instability is observed when
`=0, i.e. using the linear elastic (quadratic) approxima-
tion of estrain to begin with, may simply be explained
in terms of a vanishing amplitude, not as indicating the
absence of instability in this limit. On the other hand,
based on presently available evidence, we cannot exclude
the possibility that the instability disappears at a finite
(yet very small) value of `∝ Γ0/µ, as further discussed
below.

While α appears to be independent of the form of
near tip elastic nonlinearity, the slope β in the linear
λ – Γ0/µ relation does depend on it. To understand this
dependence, recall that the nonlinear length ` is propor-
tional to Γ0/µ, but is not identical to it (e.g. Γ0/µ exists
also in the absence of elastic nonlinearity, while ` does
not) [4]. Consequently, material dependence (in addi-
tion to v-dependence) is expected to be encapsulated in
the proportionality factor. To test this possibility, we
should directly calculate `, instead of using its dimen-
sional estimate. To calculate ` in our large-scale simu-
lations, we need to estimate the actual length at which
near tip nonlinearity becomes significant. Any energy
functional estrain can be uniquely decomposed into its lin-
ear elestrain and nonlinear enlstrain≡estrain − elestrain parts. The
region near the tip at which ‖∂

H
enlstrain‖/‖∂H

elestrain‖ be-
comes non-negligible can be used to define ` (‖ · ‖ is the
magnitude of a tensor, i.e. the square root of the sum
of the squares of its elements). In particular, we de-
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fine `≡
√
A, where A is the area of the region in which

‖∂
H
enl
strain‖/‖∂H

elestrain‖≥ 0.5 (see Fig. S1 in [20]), consis-
tently with earlier definitions [4]. While the existence
of a threshold (here 0.5) involves some degree of arbi-
trariness in the definition of `, the results themselves do
not strongly depend on the exact threshold (see Fig. S2
in [20]).

In Fig. 2b we plot ` (as just defined) vs. Γ0/µ for both
NH and SVK brittle materials. For both types of materi-
als we observe `∝Γ0/µ, as predicted theoretically. More-
over, the pre-factor in this relation is significantly larger
for SVK materials compared to NH materials, which is
consistent with the already discussed stronger nonlinear-
ity of the former. In fact, the variability in the pre-factor
appears to be similar in magnitude to the variability in
the slope of the linear λ – Γ0/µ relation shown in Fig. 2a.
To test whether the material dependence of the pre-factor
indeed accounts for the material dependence of the wave-
length shown in Fig. 2a, we plot λ vs. ` in Fig. 2c. We
observe that the two curves approximately collapse one
on top of the other, suggesting that in fact the oscillations
wavelength follows a universal master curve λ=α ξ+β̃ `,
where α and β̃ = 0.3±0.07 are nearly material indepen-
dent. These results yet again strongly support the uni-
versal character of the 2D oscillatory instability.

FIG. 3. (a) Oscillations followed by tip-splitting in a phase-
field simulation of NH materials under a large driving force
(see Supplemental Movie S1). (b) The corresponding exper-
imental observation (courtesy of Jay Fineberg, experimental
details can be found in [10]).

When the driving force for fracture W , i.e. the stored
elastic energy per unit area ahead of the crack, is suf-
ficiently large to allow cracks to accelerate to the criti-
cal velocity vc, the oscillatory instability emerges. Are
there additional, previously undiscovered instabilities in
2D dynamic fracture triggered when cracks are driven
even more strongly? When W is further increased, there
exists a range of driving forces for which steady-state
oscillatory cracks exist. As W is increased even more,
a tip-splitting instability emerges. It can emerge either
from oscillatory crack states (resulting in asymmetric tip-
splitting, as shown in Fig. 3 and in Supplemental Movie
S1) or directly from straight crack states (resulting in
symmetric tip-splitting, as shown in Supplemental Movie
S2). This ultra-high-velocity tip-splitting instability in
2D dynamic fracture appears to be different from tip-
splitting in 2D simulations [27, 28, 33–42] and from the
micro-branching instability in 3D experiments [5]. In

Fig. 3a we present tip-splitting that emerges after oscil-
lations (see Supplemental Movie S1). Remarkably, such
oscillations followed by tip-splitting have been recently
observed under strong driving force conditions in previ-
ously unpublished experiments on brittle NH materials,
see Fig. 3b.

(a) (b)

FIG. 4. Stability phase-diagram of 2D dynamic fracture
in the W/Γ0 – Γ0/µξ plane for SVK (a) and NH materials
(b). Shown are straight cracks (diamonds), oscillatory cracks
(circles), and oscillatory or straight cracks undergoing tip-
splitting (squares). See Supplemental Movies corresponding
to the thick-lined squares in panel b. The upper thick-lined
square also corresponds to Fig. 3a. The thick-lined circles in
panels a and b correspond to Figs. 1b and 1a, respectively.

We are now in a position to construct a compre-
hensive stability phase-diagram of 2D dynamic fracture.
The analysis presented above indicates that the rele-
vant dimensionless parameters for such a stability phase-
diagram are the ratio between the intrinsic nonlinear
scale `∝ Γ0/µ and the intrinsic dissipation scale ξ, and
the ratio between the driving force for fracture W and
the fracture energy scale Γ0. The stability phase-diagram
in the W/Γ0 – Γ0/µξ plane is shown in Fig. 4 for both
brittle SVK (panel a) and NH (panel b) materials. For
both classes of materials, for a fixed and finite Γ0/µξ,
the phase-diagram exhibits the sequence of transitions
with increasing W/Γ0 described in the previous para-
graph; for W/Γ0<1 no crack propagation is possible (not
shown), steady-state straight cracks exist upon increas-
ing W/Γ0 beyond unity over some range of W/Γ0 (di-
amonds), then steady-state oscillatory cracks exist over
some range for yet larger values of W/Γ0 (circles), then
tip-splitting emerges (squares), either after oscillations
(asymmetric tip-splitting, see Supplemental Movie S1) or
before (symmetric tip-splitting, see Supplemental Movie
S2).

Interestingly, the W/Γ0 range over which oscillatory
cracks exist decreases with decreasing Γ0/µξ. In the
limit Γ0/µξ → 0, it appears to vanish altogether such
that straight cracks make a direct transition to tip-split
cracks. While present numerical limitations do not al-
low us to conclude with certainty if the oscillatory in-
stability exists or not in the absence of near tip elastic
nonlinearity, they at least show that, if present, this in-
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stability would only exist over a vanishingly small range
of loading, with a vanishingly small oscillations ampli-
tude. Our results further strongly indicate that minute
near tip nonlinearity, which is likely to exist in most ma-
terials, is sufficient to dramatically affect the instability
whose wavelength essentially determined by the dissipa-
tion length ξ. Finally, and most remarkably, the salient
properties and topology of the stability phase-diagram
appear to be universal, i.e. they are the same for two
widely different forms of near tip nonlinearity.

In summary, we highlighted in this Letter the universal
nature of the 2D oscillatory instability whose wavelength
follows a universal master curve in terms of dissipation
and nonlinear elastic intrinsic lengths, demonstrated the
existence of a high-velocity tip-splitting instability and
constructed a universal stability phase-diagram of 2D dy-
namic fracture. Future research should address the exis-
tence of the oscillatory instability in the absence of near
tip elastic nonlinearity and the origin of the high-velocity
tip-splitting instability.
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