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It is shown that the conserved charges on the event horizon and the Cauchy horizon associated
to scalar perturbations on extremal black holes are externally measurable from null infinity. This
suggests that these charges have the potential to serve as an observational signature. The proof
of this result is based on obtaining precise late-time asymptotics for the radiation field of outgoing
perturbations.

I. INTRODUCTION

Extremal black holes play a fundamental role in gen-
eral relativity, high energy physics and astronomy. It has
been reported [? ] that 70% of stellar black holes (such
as Cygnus X-1 [? ] and GRS 1915+105 [? ]) are near-
extremal, suggesting that near-extremal black holes are
ubiquitous in the universe. It has also been argued [? ]
that many supermassive black holes (such as the ones in
the center of MCG–06-30-15 [? ] and NGC 3783 [? ])
are near-extremal. The spins of the astrophysical black
holes in all these works are below the widely predicted
upper bound a ≈ 0.998M , which is called the Thorne
limit [? ]. Note that more recent works suggest that it
may be possible to go beyond the Thorne limit in the
astrophysical setting [? ]. Identifying observational sig-
natures that indicate the presence of black holes that are
sufficiently close to extremality may be fruitful for in-
vestigating whether astrophysical black holes with spins
beyond the Thorne limit exist; see for example [? ]. Ex-
tremal black holes also have interesting theoretical prop-
erties. For example, they saturate geometric inequalities
for the total mass, angular momentum and charge [? ?
? ]. Moreover, they have zero temperature and hence
they play an important role in the study of Hawking ra-
diation [? ] and in string theory [? ]. Their near-horizon
limits yield new solutions to the Einstein equations with
conformally invariant properties classified in [? ? ? ].
Applications in quantum gravity have been obtained in
[? ? ? ] and gravitational and electromagnetic signa-
tures of the near-horizon geometry have been presented
in [? ? ].

An important aspect of extremal black holes is that
they exhibit intriguing dynamical properties. Perturba-
tions of various types suffer from a “horizon instability”
[? ? ? ? ? ] according to which derivatives transversal
to the event horizon of dynamical quantities grow asymp-
totically in time along the event horizon. The source of
this instability is the existence of a charge (i.e. a sur-
face integral) H which is conserved along the horizon.
We remark that, under the presence of superradiance,
a sequence of zero-damped quasinormal modes has been
found [? ? ] leading to an amplified version of the hori-
zon instability [? ] on such backgrounds. For another
type of gravitational instability, we refer to [? ].

In this letter, we address the no-hair hypothesis in the
case of extremal black holes. The no-hair hypothesis pos-
tulates that the only externally observable classical pa-
rameters of black hole spacetimes are the mass, electric
charge and angular momentum; all other dynamical in-
formation (known as “hair”) is “lost” behind the event
horizon rendering it permanently inaccessible to external
observers. The uniqueness theorems (see e.g. [? ]) and
stability theorems (see e.g. [? ]) provide a first confir-
mation of the no-hair hypothesis for sub-extremal black
holes. In the extremal case, however, the aforementioned
conserved charge H on the event horizon may be viewed
as another classical parameter of the black hole. On
the other hand, all natural quantities (e.g. translation-
invariant derivatives of all orders) decay in time away
from the horizon. For this reason, H can be thought of
as “horizon hair” for the extremal black hole [? ].

An open problem discussed in [? ? ] is the measure-
ment of the horizon hair H by far-away observers who
receive radiation from the near-horizon region. Such ob-
servers live in the spacetime region where the distance
r from the black hole is large and comparable in size to
t, the standard time coordinate. This region is modelled
by null infinity. In this letter, we show that the hori-
zon hair H of scalar perturbations on Extremal Reissner–
Nordström (ERN) is measurable from null infinity, pro-
viding thus a resolution to the above open problem (see
Section ??). This result has not been seen before in the
literature and appears here for the first time. Previous
works [? ? ] (see Section ?? for a review and more
details) showed that the horizon hair can be read off at
constant distances r or distances r that are much smaller
than t, but they did not address the measurement of H
from null infinity.

Our result suggests that 1) extremal black holes admit
classical externally measurable hair and 2) the horizon
instability could potentially serve as an observational sig-
nature. Another implication is that scalar perturbations
also admit a conserved charge inside the black hole, on
the Cauchy (inner) horizon, whose value is equal to that
of the event horizon hair H. This directly implies that
the conserved charge on the Cauchy horizon is also mea-
surable from null infinity. Hence, our result provides a
new mechanism that can be used to read off information
at the event horizon and at the Cauchy horizon from null
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infinity. We further note that our mathematically rigor-
ous argument uncovers a new connection with soft hair
(see also the discussion in Section ??).

II. THE HORIZON HAIR H[ψ] OF ERN

We next briefly recall the horizon instability of ex-
tremal black holes. We will consider scalar perturbations
ψ solving the wave equation �gψ = 0 where g is the ERN
metric which in ingoing EF coordinates (v, r, θ, ϕ) takes
the form

g = −Ddv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2),

where D =
(
1− M

r

)2. The event horizon corresponds to
H+ = {r = M}. The vector field T = ∂v is stationary
and normal to H+, whereas ∂r is translation-invariant
([∂r, T ] = 0) and transversal to H+. Let Σ0 be a spher-
ically symmetric Cauchy hypersurface which crosses the
event horizon and terminates at null infinity (for exam-
ple, we can take Σ0 to be {v = 0} for r ≤ 2M and
{u = 0} for r ≥ 2M , where u, v are the standard double
null coordinates) and let Στ = Fτ (Σ0) where Fτ is the
flow of the vector field T . We denote by ∂ρ the radial
vector field that is tangential to Στ and satisfies ∂ρr = 1.
Let Sτ = H+ ∩Στ . Then, the following surface integrals

H[ψ] := −M
2

4π

∫
Sτ

∂r(rψ) dΩ (1)

are independent of τ and hence are conserved on H+

for all solutions ψ to the wave equation on ERN. Here
dΩ = sin θdθdϕ. We will refer to H[ψ] as the horizon hair
of ψ. In fact, there exists an infinite number of analogous
conserved charges H`[ψ] for each angular momentum `
appearing in the spherical harmonic decomposition of ψ
[? ], with H[ψ] = H0[ψ].

We next consider outgoing perturbations which arise
from compactly supported and horizon penetrating (H 6=
0) initial data. It turns out that the following instabil-
ity results on H+ [? ? ]: 1) Non-decay: ∂rψ|H+ ∼
− 1
MH[ψ] as τ →∞, 2) Blow-up: ∂r∂rψ|H+ ∼ 1

M3H[ψ]·
τ as τ → ∞. More generally ∂krψ|H+ ∼ ck ·H[ψ] · τk−1

where ck = (−1)k 1
M3

k!
(2M2)k−1 for k ≥ 1. The quantity

H can be given a physical interpretation by consider-
ing the energy density measured by incoming observers
at H+: Trr[ψ] ∼ M−6 · H2[ψ], where T is the energy-
momentum tensor, and hence does not decay along H+.
On the other hand, all physically relevant quantities
decay in time away from the horizon. Murata–Reall–
Tanahashi’s numerical simulations [? ] of the evolution
of the Einstein–Maxwell-scalar field system for perturba-
tions of ERN suggest that the horizon instability persists
in the fully non-linear setting. This instability is also rel-
evant for near-extremal black holes where it is expected
to be a transient phenomenon, see for example [? ]. For
other extensions of this instability we refer to [? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ].

One can also define a conserved charge for scalar per-
turbations on the Cauchy horizon CH+ in the black hole
interior of ERN (conserved charges can be defined on any
hypersurface with vanishing surface gravity [? ? ]):

H[ψ] := −M
2

4π

∫
Sτ

∂r(rψ) dΩ, (2)

where Sτ = {u = τ} ∩ CH+ and ∂r is taken with re-
spect to the outgoing EF coordinates (u, r, θ, ϕ) in the
interior region. In contrast to the sub-extremal case, the
spherical mean of outgoing perturbations is continuously
differentiable at the Cauchy horizon [? ? ] and hence
H[ψ] is well-defined. An important corollary of the pre-
cise late-time asymptotics (see Section ??) is the relation

H[ψ] = H[ψ] (3)

for all outgoing perturbations ψ.
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FIG. 1. A Penrose diagrammatic representation of the spacetime
regions of interest. The conserved charge on the Cauchy horizon is
equal to the horizon hair H[ψ] on the event horizon.

III. MEASUREMENTS AT NULL INFINITY

We define the following expression involving the radi-
ation field rψ|I+ of scalar perurbations ψ on any (sub-
extremal or extremal) RN spacetime:

s[ψ] :=
1

4M
lim
τ→∞

τ2 · (rψ)
∣∣
I++

1

8π

∫
I+∩{τ≥0}

rψ
∣∣
I+ dΩdτ.

(4)
In order to compute s[ψ], it actually suffices to know the
radiation field for large times τ ≥ τlate (for arbitrarily
large τlate). Indeed, the second term on the right hand
side of (??) is equal to

− 1

2M

∫
I+∩{τ=τlate}

r3∂ρ(rψ)dΩ+
1

8π

∫
I+∩{τ≥τlate}

rψdΩdτ.

We obtain the following identity on sub-extremal and
extremal RN:

s[ψ] =

{
H[ψ] in extremal RN, (5)
0 in sub-extremal RN, (6)

where in (??) ψ is an outgoing scalar perturbation on
ERN and in (??) ψ is an initially compactly supported
scalar perturbation on sub-extremal RN. Identity (??)
appears here for the first time and it shows that
the horizon hair H (and consequently, the horizon
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instability) is measurable purely from null infin-
ity. A sketch of the derivation of (??) is given in Section
??. Furthermore, in view of identity (??) (discussed fur-
ther in Section ?? below) and the fact thatH[ψ] 6= 0, the
expression s[ψ] provides an observational signa-
ture of extremal black holes. One could also expect
s[ψ] to be useful in a transient sense to provide an ob-
servational signature for near-extremal black holes. The
remaining conserved charges H` could, in principle, be
measured at null infinity in an analogous fashion. An-
other consequence of (??), combined with (??), is that
the conserved charge H on the Cauchy horizon can be
computed from null infinity. We further obtain the fol-
lowing identity on hypersurfaces of constant area radius
r = R > M in the strong field region:

H[ψ] =
R−M

4M
· lim
τ→∞

τ2 · ψ
∣∣
r=R

, (7)

confirming the numerical predictions of [? ] and the
heuristic analysis of [? ? ? ].

IV. LATE-TIME ASYMPTOTICS

A. Review of sub-extremal RN

Since higher angular modes ψ≥1 = ψ− 1
4π

∫
S2 ψ dΩ de-

cay faster than the spherical mean 1
4π

∫
S2 ψ dΩ, it suffices

to project to the spherical mean (and hence, equivalently,
it suffices to consider spherically symmetric perturba-
tions). For initial data extending to I+ on sub-extremal
RN, the unique obstruction to inverting T is the non-
vanishing of the Newman–Penrose constant I[ψ], which
is a conserved charge along null infinity. This is related
to the identity I[T ψ̄] = 0 for all regular solutions ψ̄ to
the wave equation. For compactly supported initial data
(satisfying I[ψ] = 0), we can construct the time-integral
ψ̄ of ψ which satisfies T ψ̄ = ψ and has finite Newman–
Penrose constant I[ψ̄]. We denote I(1)[ψ] = I[ψ̄]. If
follows that the unique obstruction to inverting the op-
erator T 2 is the non-vanishing of I(1)[ψ]. The relevance
of I(1)[ψ] became apparent in [? ] where the precise late-
time asymptotics were obtained for compactly supported
initial data:

ψ|H+ ψ|r=R rψ|I+
8I(1)[ψ] · 1

τ3
8I(1)[ψ] · 1

τ3
−2I(1)[ψ] · τ−2 − 8MI(1)[ψ] log τ · τ−3

TABLE I. Leading order terms in the time asymptotics on sub-
extremal RN.

The following expression of I(1)[ψ] was obtained in
terms of compactly supported initial data on Σ0 in [?
]:

I(1)[ψ] =
M

4π

∫
Σ0∩H+

ψ +
M

4π

∫
Σ0

∇ψ · nΣ0 , (8)

where the integrals are considered with respect to the
induced volume form. It turns out that I(1)[ψ] can be

computed from null infinity:

I(1)[ψ] =
M

4π

∫
I+∩{τ≥0}

rψ
∣∣
I+ dΩdτ. (9)

The integral of the radiation field along I+ has appeared
before in the work of Luk–Oh [? ] on strong cosmic
censorship. It is clear from Table ?? and identity (??)
that (??) holds for perturbations on sub-extremal RN.
Note also that the late-time asymptotics along, say, the
event horizon depend solely on the integral of the radia-
tion field along null infinity, confirming previous heuristic
work predicting dominance of the weak field dynamics in
the late-time evolution.

The existence of I(1)[ψ] yields a conservation law which
can be recast into an identity between the integral of rψ
along I+ and an analogous integral along I−, revealing a
tantalizing connection with the presence of a soft electric
hair [? ? ? ? ]. Indeed, one may formally derive the
null infinity conservation law for rψ and the conservation
of charges associated to soft electric hair for a 2-form
F satisfying the Maxwell equations with a source j, by
integrating the following 4-form equations: d ? dψ = 0
and (d ? F + 4π ? j) ∧ dε = 0, respectively, in suitable
spacetime regions and applying Stokes’ theorem. Here ε
denotes an arbitrary smooth function that only depends
on the angular coordinates.

B. Asymptotics for ERN

We distinguish three classes of perturbations on ERN:

Perturbations H I

outgoing 6= 0 = 0

static moment 6= 0 6= 0

ingoing = 0 = 0

TABLE II. Types of initial data. Here H denotes the con-
served charge on H+ and I denotes the Newman–Penrose
constant on I+.

For outgoing and ingoing perturbations (with com-
pactly supported initial data) we define the constant I(1)

as in (??) (or, equivalently, in (??)). For ingoing pertur-
bations, we also define

H(1)[ψ] :=
M2

4π

∫
H+

ψ
∣∣
H+dΩdτ. (10)

We refer to H(1)[ψ] as the time-inverted horizon charge.
A physical interpretation ofH(1)[ψ] can be given in terms
of the dual scalar field ψ̃ of ψ defined by ψ̃ = M

r−Mψ ◦Φ,
where Φ denotes the Couch–Torrence conformal inver-
sion. It can be easily seen that 1) the duality is self-
inverse, 2) ψ solves the wave equation if and only if ψ̃
solves the wave equation and 3) H[ψ] = I[ψ̃]. The latter
relation was obtained independently in [? ? ]. It fol-
lows that H(1)[ψ] := I(1)[ψ̃]. Moreover, in view of (??)
applied to ψ̃, one may obtain an expression for H(1) in
terms of the initial data on Σ0. We can now present the
precise late-time asympotics along the event horizon:
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outgoing data ingoing data
ψ|H+ 2H · τ−1 −2H(1) · τ−2

∂rψ|H+ − 1
M
·H 2

M2 ·H(1) · τ−2

∂r∂rψ|H+
1
M3 ·H · τ 1

M3 ·H(1)

∂r∂r∂rψ|H+ − 3
2M5 ·H · τ2 − 3

M5 ·H(1) · τ

TABLE III. Asymptotics along the event horizon on ERN for
outgoing and ingoing perturbations. The ingoing asymptotics
are new and have not appeared before in the literature.
The outgoing asymptotics are consistent with [? ? ? ].

We present below the precise late-time asymptotics
away from the horizon:

Data ψ|r=R rψ|I+
outgoing 4M

r−MH · τ−2
(
4MH − 2I(1)

)
·τ−2

static moment 4
(
I + M

r−MH
)
· τ−2 2 · I[ψ] · τ−1

ingoing −8
(
I(1) + M

r−MH(1)
)
·τ−3 −2I(1) · τ−2

TABLE IV. Asymptotics away from the event horizon on ERN
and specifically on r = R > M and on null infinity I+. The bold
terms are new and appear here for the first time. The
late-time asymptotics for rψ|I+ , in conjunction with the
expression (??) for I(1), yield (??). The asymptotic term for
ψ|r=R for outgoing perturbations in the strong field region {r = R}
is consistent with the results presented in [? ? ? ? ? ? ? ].

V. SKETCH OF THE PROOF

In this section we present a summary of the main
ideas involved in deriving the late-time asymptotics for
outgoing spherically symmetric perturbations on ERN.
The full details will be presented in the upcoming paper
[? ].
Step 1. We obtain the asymptotics for ψ and Tψ on

the event horizon and actually in the spacetime region to
the left of the hypersurface γH = {r = M + τα} for some
3/4 < α < 1 (see Figure ??). Indeed, we can estimate
∂u(rψ) ∼ 2Hu−2 to the left of γH which after integration
from γH yields asymptotics for rψ to the left of γH. Here
∂u is taken with respect to the standard EF double null
coordinates (u, v).
Step 2. We derive asymptotics/estimates for the

derivative ∂ρψ that is tangential to Στ as follows: in-
tegrating the wave equation along Στ from the horizon
r = M to some r > M we obtain:

Dr2∂ρψ(r, τ) =

2M2Tψ|H+(τ)+ r2Tψ(r, τ) +

∫ r

M

O(r′)Tψ +O(r′)T 2ψ dr′.

The bold horizon term is the leading one: 2M2Tψ|H+ ∼
−4MH · τ−2. We conclude that for any r > M :∣∣∂ρψ(r, τ) + 4MHD−1r−2τ−2

∣∣
≤ Cτ−

5
2 +ε ·D− 3

2 r−
1
2 + CD−1r−2τ−2−ε.

(11)

Step 3. We next obtain the late-time asymptotics for
rψ on γI = {r = τα}. We use the following splitting

identity:

rψ
∣∣∣
γI

= r∂ρ(rψ)
∣∣∣
γI︸ ︷︷ ︸

contribution from
the right side of γI

− r2∂ρψ
∣∣∣
γI︸ ︷︷ ︸

contribution from
the left side of γI

. (12)

We will show that the first (resp. the second) term on
the right hand side of (??) can be estimated using prop-
erties of the right (resp. left) side of γI . We intro-
duce a new technique, which we call the singular time
inversion. We construct the time integral ψ(1) of ψ
which solves the wave equation �gψ(1) = 0 and satisfies
Tψ(1) = ψ. Since H[ψ] 6= 0 we have that ψ(1) is singular
at the horizon; in fact, (r −M) · ∂ρψ(1) = − 2

M · H[ψ]

close to the event horizon. On the other hand, ψ(1) is
smooth away from the event horizon and has a well-
defined Newman–Penrose constant I(1) = I[ψ(1)] < ∞.
It can be shown that |rψ(1)| . τ−1/2+ε as τ → ∞
to the right of γI . The boundedness of I(1) yields
∂ρ(rψ

(1))|γI ∼ I(1)v−2 ∼ I(1)τ−2 since v ∼ τ and r ∼ τα
along γI . Hence, we obtain ∂ρ(rψ)|γI ∼ I(1)τ−3 and
hence r∂ρ(rψ)|γI ∼ rτ−3 ∼ τ−3+α along γI . We con-
clude that this term does not contribute to the asymp-
totics of rψ|γI . We next derive the precise asymptotics
of r2∂ρψ|γI . Integrating the wave equation along Στ for
r = R to r = rγI we obtain

∣∣∣Dr2∂ρψ
∣∣
γI
−Dr2∂ρψ

∣∣
r=R

∣∣∣ . ∫ rγI

R

r|∂ρ
(
rTψ

)
| dr. (13)

The right hand side can be shown to be bounded by
τ−2−ε for some ε > 0 which implies that the asymp-
totics for r2∂ρψ|γI can be derived from the asymptotics
of ∂ρψ|{r=R}. We can now apply (??) for r = R to
conclude that the asymptotics for r2∂ρψ|γI and rψ|γI
depend only on H. Specifically, we obtain as τ →∞:

rψ
∣∣∣
γI
∼ −r2∂ρψ

∣∣∣
γI
∼ −Dr2∂ρψ

∣∣∣
r=R
∼ 4MHτ−2. (14)

Step 4. Integrating backwards the estimate for ∂ρψ
of the previous steps from γI up to γH and using the
asymptotics for rψ|γI , we obtain the asymptotics for rψ
in the region between γH and γI .
Step 5. In this last step we derive the asymptotics for

rψ to the right of γI all the way up to null infinity. We
use the construction for the singular time integral ψ(1)

once again. Specifically, we derive the asymptotics of the
difference T (rψ(1))− T (rψ(1))|γI = rψ − rψ|γI in terms
of I(1) = I[ψ(1)]:∣∣∣rψ|I+(τ)− rψ|γI (τ) + 2I(1) · τ−2

∣∣∣ . Cτ−2−ε.

Plugging in the asymptotics (??) of rψ|γI yields the
asymptotics of the radiation field rψ as in Table ??.
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FIG. 2. A labeling of the spacetime regions indicating the order
in which the late-time asymptotics of ψ are derived. We see that a
delicate global study is needed in order to derive the asymptotics
on null infinity.

VI. CONCLUDING REMARKS

The physical relevance of our results stems from the
expectation that the horizon hair of axisymmetric scalar
perturbations on Extremal Kerr (EK) can be analogously
measured from null infinity. Even though the late-time
behavior for fixed non-zero azimuthal modes on EK has
been derived by Casals–Gralla–Zimmerman [? ], the pre-
cise late-time asymptotics are not known. In fact, a very
exciting problem would be to examine potential contri-

butions of the near-horizon geometry to the precise late-
time asymptotics for general (without any symmetry as-
sumptions) scalar, electromagnetic and gravitational per-
turbations on EK. A closely related problem is to probe
the measurability properties of the Lucietti–Reall grav-
itational instability [? ] of EK from null infinity. The
ultimate goal would be of course to study the fully non-
linear perturbations of EK in the context of the Einstein-
vacuum equations. A simplified but still very interesting
problem would be to obtain analogous measurability re-
sults for the Murata–Reall–Tanahashi spacetimes [? ].

VII. ACKNOWLEDGEMENTS

We thank Harvey Reall for his insightful comments. S.
Aretakis acknowledges support through NSF grant DMS-
1265538, NSERC grant 502581, an Alfred P. Sloan Fel-
lowship and the Connaught Fellowship 503071.

[] M. Volonteri, P. Madau, E. Quataert, and M. Rees, As-
trophys.J. 620, 69 (2005).

[] Gou L. et al., Astrophys. J. 790 (2014).
[] J. E. McClintock, R. Shafee, R. Narayan, R. A. Remil-
lard, S. W. Davis, and L.-X. Li, Astrophys.J. 652, 518
(2006).

[] L. Brenneman, Measuring the Angular Momentum of Su-
permassive Black Holes, Springer Briefs in Astronomy
(Springer, 2013).

[] L. W. Brenneman and C. S. Reynolds, Astrophys. J. 652
(2006).

[] Brenneman, L. et al., Astrophys. J. 736 (2011).
[] K. S. Thorne, Astrophys J. 191, 507 (1974).
[] A. Sądowski, M. Bursa, M. Abramowicz, W. Kluźniak,
J.-P. Lasota, R. Moderski, and M. Safarzadeh, A & A
532 (2011).

[] S. Gralla, S. Hughes, and N. Warburton, Class. and
Quantum Grav. 33 (2016).

[] S. Dain, Phys. Rev. Lett. 96, 101101 (2006).
[] M. E. G. Clement, J. L. Jaramillo, and M. Reiris, Class.
Quantum Grav. 30 (2013).

[] A. Alaee, M. Khuri, and H. Kunduri, Phys. Rev. Lett.
119, 071101 (2017).

[] S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys.
Rev. D 51, 4302 (1995).

[] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996).
[] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. K.
Townsend, and A. Van Proeyen, Phys. Rev. Lett. 81,
4553 (1998).

[] H. K. Kunduri, J. Lucietti, and H. S. Reall, Class. Quan-
tum Grav. 24, 4169 (2007).

[] S. Hollands and A. Ishibashi, Annales Henri Poincaré 10,
1537 (2010).

[] M. Guica, T. Hartman, W. Song, and A. Strominger,
Phys. Rev. D 80, 124008 (2009).

[] I. Bredberg, T. Hartman, W. Song, and A. Strominger,
JHEP 1004 (2010).

[] T. Hartman, K. Murata, T. Nishioka, and A. Strominger,
JHEP 2009 (2009).

[] S. Gralla, A. Lupsasca, and A. Strominger, Mon. Not. R.
Astron. Soc. 475, 3829 (2018).

[] S. Aretakis, Adv. Theor. Math. Phys. 19, 507 (2015).
[] S. Aretakis, Commun. Math. Phys. 307, 17 (2011).
[] S. Aretakis, Ann. Henri Poincaré 12, 1491 (2011).
[] J. Lucietti and H. S. Reall, Phys. Rev. D 86, 104030
(2012).

[] J. Lucietti, K. Murata, H. S. Reall, and N. Tanahashi,
JHEP 1303, 035 (2013).

[] K. Glampedakis and N. Andersson, Phys. Rev. D 64,
104021 (2001).

[] H. Yang, A. Zimmerman, A. Zenginoglu, F. Zhang,
E. Berti, and Y. Chen, Phys. Rev. D 88, 044047 (2013).

[] M. Casals, S. E. Gralla, and P. Zimmerman, Phys. Rev.
D 94, 064003 (2016).

[] H. Yang, A. Zimmerman, and L. Lehner, Phys. Rev. Lett.
114, 081101 (2015).

[] S. Alexakis, A. D. Ionescu, and S. Klainerman, Duke
Math. J. 163, 2603 (2014).

[] M. Dafermos, G. Holzegel, and I. Rodnianski,
arXiv:1601.06467 (2016).

[] K. Murata, H. S. Reall, and N. Tanahashi, Class. Quan-
tum Grav. 30, 235007 (2013).

[] S. Bhattacharjee, B. Chakrabarty, D. D. K. Chow,
P. Paul, and A. Virmani, arXiv:1805.10655 (2018).

[] A. Ori, arXiv:1305.1564 (2013).
[] O. Sela, Phys. Rev. D 94, 084006 (2016).
[] Y. Angelopoulos, S. Aretakis, and D. Gajic, Annales
Henri Poincaré 18, 1593 (2017).

[] S. Aretakis, Phys. Rev. D 87, 084052 (2013).
[] S. Hadar and H. S. Reall, Journal of High Energy Physics

2017, 62 (2017).
[] L. M. Burko and G. Khanna, Phys. Rev. D 97, 061502
(2018).

[] S. Aretakis, Class. Quantum Grav. 30, 095010 (2013).



6

[] P. Bizon and H. Friedrich, Class. Quantum Grav. 30,
065001 (2013).

[] O. Sela, Phys. Rev. D 93, 024054 (2016).
[] K. Murata, Class. Quantum Grav. 30, 075002 (2013).
[] S. Dain and G. Dotti, Class. Quantum Grav. 30, 055011
(2013).

[] V. Cardoso, T. Houri, and M. Kimura, Phys. Rev. D 96,
024044 (2017).

[] M. Casals and P. Zimmerman, arXiv:1801.05830 (2018).
[] S. E. Gralla, A. Zimmerman, and P. Zimmerman, Phys.
Rev. D 94, 084017 (2016).

[] P. Zimmerman, Phys. Rev. D 95, 124032 (2017).
[] M. Richartz, C. A. R. Herdeiro, and E. Berti, Phys. Rev.
D 96, 044034 (2017).

[] S. Aretakis, J. Funct. Analysis 263, 2770 (2012).
[] S. E. Gralla and P. Zimmerman, Class. Quantum Grav.

35 (2018).
[] D. Gajic, Comm. Math. Phys. 353, 717 (2017).

[] S. Aretakis, Annals of PDE 3, 3 (2017).
[] Y. Angelopoulos, S. Aretakis, and D. Gajic, Advances in
Mathematics 323, 529 (2018).

[] Y. Angelopoulos, S. Aretakis, and D. Gajic, Classical
and Quantum Gravity 35, 155007 (2018).

[] J. Luk and S.-J. Oh, Duke Math. J. 166, 437 (2017),
1501.04598.

[] A. Strominger, Journal of High Energy Physics 2014,
152 (2014).

[] T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger,
Journal of High Energy Physics 2014, 112 (2014).

[] S. W. Hawking, M. J. Perry, and A. Strominger, Phys.
Rev. Lett. 116, 231301 (2016).

[] S. W. Hawking, M. J. Perry, and A. Strominger, Journal
of High Energy Physics 2017, 161 (2017).

[] C. J. Blaksley and L. M. Burko, Phys. Rev. D 76, 104035
(2007).

[] Y. Angelopoulos, S. Aretakis, and D. Gajic, preprint
(2018).


