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We experimentally and numerically investigate the sudden expansion of fermions in a homogeneous
one-dimensional optical lattice. For initial states with an appreciable amount of doublons, we observe
a dynamical phase separation between rapidly expanding singlons and slow doublons remaining in
the trap center, realizing the key aspect of fermionic quantum distillation in the strongly-interacting
limit. For initial states without doublons, we find a reduced interaction dependence of the asymptotic
expansion speed compared to bosons, which is explained by the interaction energy produced in the

quench.

Many-body physics in one dimension (1D) differs in
numerous essential aspects from its higher-dimensional
counterparts. Several familiar concepts, such as Fermi-
liquid theory [1, 2], are not applicable in 1D. More-
over, many 1D models are integrable, meaning that
there exist exact solutions. Examples include the Lieb-
Liniger model [3], the Heisenberg chain [4] or the 1D
Fermi-Hubbard model (FHM) [5]. These models ex-
hibit extensive sets of conserved quantities that pre-
vent thermalization [6-11] and can, in lattice systems,
lead to anomalous transport properties [12-15]. Cold-
atom experiments offer the possibility to study trans-
port properties of strongly-correlated quantum gases in
a clean environment. Their excellent controllability en-
abled far-from-equilibrium experiments [16-20] as well as
close-to-equilibrium measurements in the linear-response
regime [21-24] both in extended lattices and mesoscopic
systems [25-27].

Here, we investigate mass transport in the 1D FHM
in far-from-equilibrium expansion experiments [18-20],
where an initially trapped gas is suddenly released into a
homogeneous potential landscape as illustrated in Fig. 1.
There are two distinct regimes of interest in sudden-
expansion studies: the asymptotic one, where the ex-
panding gas has become dilute and effectively non-
interacting [28-36] and the transient regime, where the
dynamical quasi-condensation of hardcore bosons [37-41]
and quantum distillation [20, 42—-44] have been found.

Quantum distillation occurs for large interactions. It
relies on the dynamical demixing of fast singlons (one
atom per site) and slow doublons (two atoms per site)
during the expansion: while isolated doublons only move
with a small effective second-order tunneling matrix ele-
ment Jog = 2J2/U < J for U > J [46, 47, neighboring
singlons and doublons can exchange their positions via
fast, resonant first-order tunneling processes. Thus, af-
ter opening the trap, singlons escape from regions of the
cloud initially occupied by singlons and doublons, leading
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FIG. 1. Schematics of the expansion experiment.
Top: Initial state of the harmonically trapped two-component
Fermi gas with (a) singlons (red) and doublons (blue) and (b)
only singlons in an optical lattice. After quenching to lower
lattice depths and removing the harmonic trap, fermions ex-
pand in a homogeneous 1D lattice; J = h - 0.54(3) kHz de-
notes the tunnel coupling, U refers to the on-site interaction
strength and d is the lattice constant. The expansion dynam-
ics is dominated by first-order processes: (a) the resonant
exchange of singlon and doublon positions leads to quantum
distillation, (b) the dynamical formation of doublons results
in reduced asymptotic expansion velocities. Bottom: time-
dependent density-matrix renormalization group (tDMRG)
simulations of the atomic density (7;) for U = 20J as a func-
tion of time ¢ in units of the tunneling time 7 = hi/J.

to a spatial separation of the two components. Without
an increase of the doublon density in the central region,
this regime is termed weak quantum distillation [44].
Ideal initial-state conditions can lead to a strong version
of quantum distillation, where the spatial separation of
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FIG. 2. Dynamical phase separation of singlons and doublons.
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singlon (s, red) and doublon (d, blue) clouds as a function of time for (a) U = 5J and (b) U = 20J. The dashed lines illustrate
the hypothetical expansion of a non-interacting doublon cloud with effective tunneling Jeg [45]. Insets: Number of atoms on
singly- and doubly-occupied sites, N5 and Ny, as a function of time. (c¢) Experimental snapshots of the integrated line densities

for singlon and doublon clouds, ps(x) and pa(z), at ¢ = 0 (left) and ¢ = 407 (right).

(d) Ratio Nj/N¢ of atom numbers on

doubly- and singly-occupied sites in the central region of the cloud (red rectangle in the inset) as a function of time for U = 20.J.
Every data point is averaged over four measurements and error bars represent the standard-error-of-the-mean. Solid lines are

guides to the eye.

singlons and doublons yields a contraction of the dou-
blon cloud radius [Fig. 1(a)]. In the extreme limit this
distillation could be used to purify a finite-temperature
band insulator [42], thereby dynamically generating low-
entropy regions. This would represent a major advance-
ment in the ongoing quest of realizing fermionic many-
body physics at the lowest entropy scales [48-52]. So far,
experimental evidence for weak quantum distillation has
only been found for bosons [20] at intermediate interac-
tion strengths, where doublons can decay into singlons
on time scales relevant to quantum distillation.

In this work, we investigate the non-equilibrium mass
transport in the 1D FHM starting from initial product
states in deep optical lattices [18, 19], while close-to-
thermal initial states were used in Ref. [20]. The expan-
sion dynamics is initiated by two simultaneous quenches:
a sudden increase of the tunnel coupling, resulting in a
quench from almost infinite to finite U/J, and a sud-
den removal of the harmonic trap (Fig. 1). We prepare
initial product states with or without doublons (Fig. 1)
and quantitatively investigate the time evolution of sin-
glon and doublon densities individually. For initial states
with doublons, we find a distinct dynamical phase sepa-
ration between singlons and doublons, which is the fun-
damental mechanism of fermionic quantum distillation
[Fig. 1(a)]. For initial states without doublons [Fig. 1(b)],
we study interaction effects in the asymptotic expansion
velocities [35]. We observe that the cloud expands rapidly
at all interaction strengths with slightly smaller velocities
at intermediate values, in agreement with our numerical
simulations. This can be interpreted in terms of the in-
teraction energy produced in the quench of U/.J, which

leads to the dynamical formation of doublons [19, 33, 53].

Ezperiment. We prepare a degenerate Fermi gas of
30(1) x 10% 4°K atoms in a crossed dipole trap at the ini-
tial temperature T'/Tr = 0.15(1), where T is the Fermi
temperature. The gas consists of an equal mixture of
two spin components corresponding to the states |1) =
|mp = —=7/2) and |}) = |mp = —9/2) in the F' = 9/2 hy-
perfine ground-state manifold. Our sequence begins with
loading the atoms into a blue-detuned three-dimensional
optical lattice with wavelength A\, = 532nm and lattice
constant d = A, /2 along the z direction and A} = 738 nm
in the transverse directions. While the main lattice along
x is initially loaded to 20 E,.., the transverse lattices are
simultaneously ramped to a depth of 33 E.; , where they
remain during the whole sequence to realize individual
1D systems. Here, E,; = h’k?/(2m) are the respective
recoil energies with j € {z, L}, k; = 27/); denotes the
corresponding wave vector and m is the mass of °K.
Holding the atoms in the deep initial lattice for 20 ms de-
phases remaining correlations between neighboring sites,
such that the resulting state can be approximated as a

_ A\ (s )
product state |10) = [ [;crap (CiT) (cu) |0), where
éja is the fermionic creation operator, n,, € {0,1},
o € {1,}} and i is the lattice-site index. The spin orien-
tations are expected to be distributed randomly among
the sites and the average number of atoms per lattice site
in the center of the cloud (n;) = Y _(ni,) is estimated
to be (i) < 0.9 [45], Ayg = & ¢, is the density opera-
tor. The fractlon of atoms on doubly-occupied sites ng =
Ng4/(Ng+ Ng) in the initial state can be tuned via the in-
teraction strength during the loading process employing



a Feshbach resonance at 202.1 G [45]. Here, Ns(N4) de-
notes the number of particles on singly(doubly)-occupied
sites. The dynamics starts with suddenly quenching the
main lattice to 8 E,.,. Simultaneously, the strength of the
dipole trap is adjusted to compensate the anti-confining
harmonic potential introduced by the lattice [45]. Our
system is then described by the homogeneous 1D FHM

H=—J Z (é;»rgéi+1g + hC) + UZ?’ALZ*TTALQ . (1)
ey i

After a variable expansion time ¢ the on-site population is
frozen by suddenly increasing the lattice depth to 20 E,.,.
Subsequently, the cloud is imaged in-situ using high-field
imaging either with or without removing doublons [45].
By combining these images, the dynamics of singlons and
doublons can be resolved individually.

Quantum distillation. We characterize the dynam-
ics by monitoring the singlon and doublon clouds as a
function of the expansion time for an initial state with
nqg = 0.40(2) [Figs. 2(a), (b)]. Isolated doublons are ex-
pected to become stable objects for interaction strengths
that are large compared to the bandwidth U > W,
W = 4J [54], since in this case the interaction energy
released in the doublon decay cannot be transferred into
kinetic energy of singlons in low-order processes [46, 54].
This is in agreement with our observations [insets in
Figs. 2(a), (b)], where for U = 5J we witness a fast dou-
blon decay of about 25% in the early stages of the ex-
pansion ¢ < 57, which is accompanied by a compatible
increase of the singlon number. In contrast, both num-
bers remain approximately constant for U = 20J. Except
for a small residual decay, which is attributed to light-
assisted losses of doublons [55], this enables us to probe
the dynamical phase separation of singlons and doublons
at approximately constant doublon numbers.

We study the phase separation by extracting the cloud
sizes R, q(t) at half-width-at-half maximum (HWHM).
We observe a rapidly-expanding singlon cloud, which has
approximately doubled in size at t=407. In contrast, the
doublon cloud size grows much slower and we even ob-
serve a weak shrinking of the cloud for U = 20J. For
comparison, we show the expected expansion of a fic-
titious cloud of non-interacting doublons expanding ac-
cording to Jeg [47]. The difference highlights the non-
trivial nature of this transient dynamics. The dynamical
phase separation is even more evident in the comparison
of the integrated line densities of singlons and doublons at
t=0 and t =407 for our strongest interactions [Fig. 2(c)].
Clearly, the singlons expand significantly, while the dou-
blons essentially remain in the center of the cloud. As a
consequence, the ratio of atom numbers on doubly- and
singly-occupied sites Nj/N¢ in the center of the cloud in-
creases by about 40% [Fig. 2(d)]. While this signal could
in principle be caused by 1D systems with a low doublon
fraction, a quantitative analysis based on our measured
initial density distributions shows that their contribution
to the signal is negligible [45]. Hence, our data establish
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FIG. 3. tDMRG results for the relative doublon cloud
size. Main panel: Relative doublon could size ARqg(t) for
three different initial uniform densities n at U/J = 20. The
initial state consists of 12 singlons, 4 doublons and {0, 4,8}
holons, respectively [45]. The solid lines end at time tmax,
when the width of the singlon cloud increased to ARs = 0.8.
This value corresponds to the experimental one at ¢t = 407.
Inset: Experimental data for ARy as a function of the inter-
action strength at t = 407, which was evaluated using linear
fits to the time traces Rq(t) as shown in Figs. 2(a), (b) [45].

clear evidence for fermionic quantum distillation in the
weak regime in a non-equilibrium mass-transport exper-
iment.

tDMRG results for transient dynamics. Quantum dis-
tillation in the strong regime can further lead to a shrink-
ing of the doublon cloud. The precise amount depends on
the number of singlons initially confined in the doublon
cloud, the initial density and the cloud size [42, 44, 45].
Here, we focus on the role of the initial density, which
has the largest influence. Figure 3 shows tDMRG sim-
ulations of the relative change of the doublon cloud size
AR4(t) = Ry(t)/Ra(0) — 1 as a function of time for dif-
ferent average initial densities n = (Ns + Ng)/Linit in an
ideal box trap of length Li,; for constant ng = 0.4 [45].
Negative values of ARy indicate a shrinking of the dou-
blon cloud, while ARy > 0 corresponds to an expanding
doublon cloud. For the initial state with the largest den-
sity n = 1.25, we observe a large decrease of ARy(t).
This effect is substantially reduced for smaller densities
(Fig. 3) due to the presence of holons (empty sites), which
remain trapped between doublons on the time scales of
the quantum distillation process [44]. Additionally, the
dynamics becomes slower, both due to holons and due to
the larger cloud sizes used for simulations with smaller
average densities [44]. Despite these quantitative differ-
ences, however, we find that the fundamental aspect of
quantum distillation, i.e., the dynamical phase separa-
tion of singlons and doublons, is generally robust.

For comparison, we show the experimentally measured
relative changes ARy as a function of interaction strength



14 | + i * |
oY ?
O
4y ¢
12t ¢ )
=
3 0 y
=
10 r @® Experiment .
0 ¢ tDMRG fermions
¢ ¢ tDMRG Néel
0.8 ¢ ¢ tDMRG bosons
0 5 10 15 20
und
FIG. 4. Radial expansion velocities v,. Experiment

(circles) and tDMRG simulations for fermions (red dark-
shaded diamonds) and bosons (green light-shaded diamonds,
from [19]) as a function of U/J. Solid lines are guides to
the eye. The grey dashed line indicates v, = v/2d/7 in the
limiting cases U/J = 0 and U/J — oo. All initial states in
the numerical simulations have a uniform average density of
n = 1 in a box with initial size Liyix = 10.

[inset in Fig. 3]. For all interactions the time traces of the
doublon HWHM are fitted with a linear function to cal-
culate AR, at the maximum expansion time ¢ = 407 [45].
We observe that AR;(407) approaches zero with increas-
ing interaction strength and becomes slightly negative at
U/J = 20. In order to facilitate a comparison between
experiment and numerics, where much smaller particle
numbers are used, we define a time %, for the simu-
lation at which the relative singlon cloud size AR has
reached the same value as in the experiment (Fig. 3).
Our numerical results indicate that the contraction is
not completed at this time. In the experiment this time
is limited by the degree of flatness of the homogeneous
potential. The remaining difference between the numer-
ical and experimental results is most likely due to other
initial-state properties, such as inhomogeneous density
distributions and the averaging over several 1D systems
with different initial-state properties [45].

Asymptotic dynamics and interaction effects. Here, we
focus on the dynamics of the whole cloud for initial states
with a negligible doublon fraction (ng < 0.05). We ex-
tract the second moment r?=3",(f;)(io—%)?d*/(Ns+Na)
of the time-dependent density distribution (see [45] for
details on the analysis), which is routinely computed in
numerical simulations [32, 33, 35]; here i is the center-
of-mass of the initially trapped gas. From the time de-
pendence of 72, we extract the asymptotic radial velocity
v, by fitting V2 = /72 4+ v2t2, where 7 is the initial
size of the cloud [45]. Figure 4 shows v, as a function of
U/J. We find v, =1.40(6)d/7 for U = 0 and U = 20J,
whereas for intermediate interactions U ~ 3J, the ra-
dial velocity decreases weakly. Note that for U > W,

the mass transport in the 1D FHM in the absence of
doublons becomes identical to a non-interacting gas of
spinless fermions and thus it behaves exactly like hard-
core bosons in 1D with v, = v/2d/7 [19]. The values
in the limiting cases agree with these theoretical predic-
tions for free fermions expanding from our initial state.
Remarkably, compared to the Bose-Hubbard model [19],
the reduction of v, at intermediate interaction strengths
is much weaker (Fig. 4).

Starting from the limit of very strong interactions, the
interaction dependence of v, can be understood in a two-
component picture of independent singlon and doublon
gases [56, 57]: The dynamically generated doublons un-
dergo a quantum distillation mechanism and are then
inert on the time scales of the experiment. Thus, the
more doublons are generated, the less kinetic energy is
available for the rapidly expanding singlons. Focusing on
the quantitative difference between the v, (U) curves for
bosons and fermions, which is the main result of the data
presented in Fig. 4, two aspects are important. First,
in the case of fermions, doublons can only be gener-
ated between sites with fermions of different spin orienta-
tion [33]. The initial state that has the most of such 1-|
neighbors is the Néel state, and this initial state leads
to the most pronounced minimum of v, (Fig. 4, [33]).
In order to compare to the experiment, we average over
many 1D systems with random spin orientations for a
balanced spin mixture (dark red diamonds in Fig. 4).
This averaging leads to a weaker minimum in v, than for
the Néel state and is in agreement with our experimental
data. The second reason for the stronger minimum in
v, for bosons is the fact that the interaction energy can
become much larger, since larger local occupancies are
possible [19]. In order to test whether the observed v,
can primarily be understood as a function of the inter-
action energy in the system after the formation of dou-
blons, we show data for different U/J and different spin
configurations versus interaction energy in the Supple-
mental Material (Fig. S8 in [45]). The data for bosons
lie well outside the accessible range of interaction ener-
gies for fermions because of higher site occupations, but
fall onto an extrapolation of the fermionic data. Hence,
the integrability of the 1D FHM does not seem to be the
dominant reason for the differences to the bosonic case.
An interesting extension would be the calculation of ex-
pansion velocities by exploiting the integrability along
the lines of [35, 58], which we leave for future work.

Summary and Outlook. We investigated the sudden
expansion of an interacting cloud of fermions. Starting
from an initial product state with an appreciable dou-
blon fraction, we observed a dynamical phase separation
between singlons and doublons, theoretically known as
fermionic quantum distillation in the weak regime. Ad-
ditionally, we analyzed radial velocities for different in-
teraction strengths using initial states consisting purely
of singlons. We found a decrease of the radial velocities
at weak interactions and attributed this effect to dynam-
ically generated doublons. The weak decrease of radial



velocities of expanding fermions compared to bosons is
due to the Pauli principle leading to a crucial depen-
dence of the radial velocities on the initial spin config-
uration. Future experiments could use the singlon and
doublon resolved scheme to detect signatures of FFLO
states [58-60] in the expansion velocity of the unpaired
spin component. Moreover, it would be intriguing to ob-
serve the strong version of quantum distillation, resulting
in the dynamical formation of low-entropy regions. This
could be achieved by optimizing the initial-state proper-
ties and improved imaging techniques, such as microwave
dressing to isolate central 1D systems, where the condi-

tions for strong quantum distillation are best, or using
quantum-gas microscopes [61, 62].
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