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We develop a statistical framework for the rheology of dense, non-Brownian suspensions, based
on correlations in a space representing forces, which is dual to position space. Working with the
ensemble of steady state configurations obtained from simulations of suspensions in two dimensions,
we find that the anisotropy of the pair correlation function in force space changes with confining shear

stress (02y) and packing fraction (¢).

Using these microscopic correlations, we build a statistical

theory for the macroscopic friction coefficient: the anisotropy of the stress tensor, u = oqy/P. We
find that p decreases (i) as ¢ is increased and (ii) as oay is increased. Using a new constitutive
relation between p and viscosity for dense suspensions that generalizes the rate-independent one,
we show that our theory predicts a Discontinuous Shear Thickening (DST) flow diagram that is
in good agreement with numerical simulations, and the qualitative features of p that lead to the
generic flow diagram of a DST fluid observed in experiments.
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Dense suspensions of frictional grains in a fluid often
display an increase in viscosity = 04,/ (thickening) as
the confining shear stress (o,,) or strain rate (§) are in-
creased. At a critical density dependent shear rate 4, the
viscosity increases abruptly: a phenomenon termed Dis-
continuous Shear Thickening (DST). In stress-controlled
protocols, 7 ~ o, marks the DST boundary [1, 2]. Ex-
periments have also observed interesting features in other
components of the stress tensor such as the first normal
stress difference, N1 = 0, —0yy close to the DST regime
[3]. A mean-field theory [4, 5], based on an increase in the
fraction of close interactions becoming frictional (rather
than lubricated) with increasing shear stress, has been
extremely successful at predicting the flow curves and the
DST flow diagram in the space of packing fraction, ¢ and
shear stress or strain rate [6, 7]. The physical picture of
lubricated layers between grains giving way to frictional
contacts when the imposed o, exceeds a critical value
set by a repulsive force [4] provides a consistent theory
of DST [7], shear jamming fronts [8] and instabilities of
the shear-thickened state [9].

Although several features relating to the flow of dense
suspensions can be well explained within this mean-field
theory, the nature of the microscopic correlations under-
lying this transition remains far from clear [6]. Conven-
tional measures such as the pair correlation function do
not exhibit pronounced changes accompanying DST. An
interesting, intrinsic feature of DST is that the macro-
scopic friction coefficient, u, decreases as the fraction
of frictional contacts increases: the mean normal stress
grows more rapidly than the shear stress. This, and con-
tact network visualizations from simulations [6], indicate

that there are important changes in the network of fric-
tional contacts that are not captured by scalar variables
such as the fraction of frictional contacts. In this work,
we focus on the microscopic origin of the evolution of the
components of the stress tensor across DST, and con-
struct a statistical theory for u, the anisotropy of the
stress tensor.

While the changes in real space near DST can be incre-
mental, and hence do not show any significant changes
in pair correlations, the contact forces change dramati-
cally and play a central role. The steady state flow of
non-inertial suspensions is governed by microscopic con-
straints of force and torque balance, and these constraints
can lead to non-trivial correlations of contact forces. The-
ories have focussed, up to now, on the average proper-
ties of the inter-particle forces [4]. However, fundamen-
tal questions about how interactions at the microscopic,
contact level and the constraints of force balance give rise
to a macroscopic transition remain [10].

In two-dimensional systems, the crucial constraint of
force balance can be naturally accounted for by work-
ing in a dual space, known as a force tiling. In this
representation, inter-particle forces are represented by
the difference of vector height fields, {h}, defined on the
voids. This representation has been shown to be partic-
ularly useful in characterizing shear jamming transitions
in frictional granular materials [11]. Unlike shear jam-
ming, where configurations and stresses are static, flow-
ing suspensions provide an ensemble of non-equilibrium
steady states that are ripe for a statistical description.
We show that the non-equilibrium steady states (NESS)
at a given 0,y and ¢ can be mapped to a statistical en-



FIG. 1: (Color online) a) A snapshot of a suspension of 2000
soft frictional disks sheared at a variable rate 7, with the
shear stress o.y held fixed. The lines represent the pair-
wise (lubricated and frictional contact) force vectors between
the individual grains. b) The force tiling associated with
this flowing dense suspension. The bonds correspond to the
pairwise forces, with larger polygons representing grains with
higher stress. The vertices of the tiling represent height vec-
tors h = (ha, hy), whose difference provides the pairwise force
at each bond. T'y = (T4, Tsy) and T'y = (Tye, [yy) represent
the sum of forces in the x and y directions respectively. The
light blue regions represent periodic copies of the system.

semble characterized by an a-priori probability distribu-
tion. This distribution is constructed from the measured
pair correlation functions in force space.

In the continuum, the height fields define_the local
Cauchy stress tensor, by the relation & = V x h, and the
area integral of &, or the force moment tensor, $ [12], in
terms of difference of the height fields across the system:

7= (—amhm by )T YT\ —Lalus —LuTs, D

where fz(y) represents the sum of forces along the x(y)
directions, and L,,) represents the linear dimensions
g

of the system (¢ = ¥/L,L,). Additionally, global
torque balance implies ¥,, = Y,,. In our simulations
L,=1L, =1L, hence I'y, = -1y, = Loy, = 0. Work-
ing with the ensemble of force tilings generated from the
NESS created in simulations, we observe changes in the
anisotropy of the Pair Correlation Function of the Ver-
tices (PCFV) of the tilings as ¢ and o4, are changed.

Using these microscopic correlations, we build a statisti-
gal theory for . The reason for using the components of
Y is their clear geometric signatures in the force-tilings
as shown in Fig. 1. The stress anisotropy is defined as
the ratio of the difference in eigenvalues, 7, to the trace
2P = 04y + Tyy, of &, which can also be related to the

r NE+4%2, o)
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components of X:

where Ny = Y., — Yyy- In the limit of Ny — 0, 55 is
identical to the macroscopic friction coefficient p = G;,y.
In this letter, we show that the change in the macro-
scopic friction coefficient, p(@, o4y ), across the DST tran-
sition [13] can be obtained from a statistical theory based
on an effective pair potential between the vertices of the
force tilings. An extension of the quasi-Newtonian, rate-
independent, suspension rheology model [14, 15] can then
be used to compute the viscosity, (¢, ozy):

(b, Oay) X 1, Oay) (1, 00y) — pe) > . (3)

As we show [13], this constitutive relation is valid for
thickening suspensions in the limit of ¢ — ¢,,,, where ¢,,
is the frictional jamming point. We use our microscopic
theory of 1 in conjunction with this constitutive relation
to predict the rheological properties characterizing DST.

Simulating Dense Suspensions: We perform simula-
tions of simple shear under constant stress of a mono-
layer of N = 2000 bidisperse (radii a and 1.4a) spherical
particles by methods described in detail previously [6].
These follow an overdamped dynamics and are subject
to Stokes drag, pairwise lubrication, frictional contact,
and short-range repulsive forces (see Supplemental In-
formation). Because of the repulsive force of maximum
Fy at contact, frictional contacts only form for stresses
about or larger than ¢ = Fy/a?, which induces DST at
volume fractions ¢ 2> 0.78 [6].

Force Space Representation: For a force balanced con-
figuration of grains with pairwise forces, the “vector sum”
of forces on every grain, i.e. the force vectors arranged
head to tail (with a cyclic convention), form a closed
polygon. Next, Newton’s third law imposes the condi-
tion that every force vector in the system, has an equal
and opposite counterpart that belongs to its neighbor-
ing grain. This leads to the force polygons being exactly
edge-matching. Extending this to all particles within the
system leads to a “force tiling” [11, 16]. The adjacency
of the faces in the tiling is the adjacency of the grains,
whereas the adjacency of the vertices is the adjacency of
the voids (the heights are associated with the voids in
the network). In addition to the pairwise forces between
grains, each particle experiences a hydrodynamic drag,
which can be represented as a body force. Imposing the



constraints of vectorial force balance in the presence of
body forces leads to a unique solution for modified height
fields, given the geometrical properties of the contact net-
work [17]. This allows us to construct the ensemble of
force tilings corresponding to the NESS of the suspen-
sion. The distribution of the hydrodynamic drag force to
contacts through the modified height vectors lead to some
very small contact forces, that do not represent “real con-
tacts”. As we discuss below, we have a systematic way
of neglecting these in our statistical analysis.

Pair Correlation Functions: Using the force tiling rep-
resentation, we compute the PCFV, defined to be

NU NU
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where N, is the total number of voids in the system,
A =T, xT,|, and p, = N, /A is the density of height
vertices in the force tiling. The PCFV are averaged over
200 configurations obtained from the simulated steady
state of dense suspensions at each ¢ and o, [13]. We find

—

a distinct fourfold anisotropic structure in go(h), which
quantitatively captures the details of the changes in the
organization of the forces acting between particles as ¢
is increased (Fig. 2). The anisotropy is sensitive, to
a lesser extent, to increases in o,. The regions where

—

g2(h) < 1 indicate regions of larger contact forces, statis-
tically, since this is where the height vertices are farther
apart than expected for an uncorrelated distribution. As
seen from Fig. 2, these regions lie along the compressive
direction for all values of ¢ and ¢,,. Complementing

—

these are the regions with go(h) > 1, which indicate re-
gions of smaller forces. The angles between these regions
clearly increase as ¢ increases [13]. These changes in

—

g2(h), especially its anisotropy, have important conse-
quences for the stress tensor, as we show below.

A Statistical Ensemble: Each force tiling is specified
by a set of vertices and a set of edges that connect these
vertices. The distances between the vertices quantify the
internal stress in the system, whereas the edges, which
quantify the specific contact forces in a configuration, can
be thought of, in a statistical sense, as fluctuating quan-
tities, with connections between pairs of vertices chosen
with some weights. We thus treat these vertices of the
force tilings as the points of an interacting system of par-
ticles. These effective interactions arise from the con-
straints of mechanical equilibrium, and from integrating
out the edges. We represent this effective interaction by
a non-central potential computed from the measured pair
correlation function, similar to constructions used in col-
loidal and polymer theory [18]:

P 1o [ 200
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FIG. 2: (Color online) a) Observed pair correlation functions
at oy = 200, at packing fractions ¢ = 0.76,0.78 and 0.8.
¢ = 0.8 is above ¢ppsr: the onset packing fraction for a regime
of stress over which the viscosity scales as o, which defines
DST (see [13]). The forces (and consequently the heights)
have been scaled by the imposed shear stress. The change
in symmetry of gg(fz) is clearly visible as the packing frac-
tion is increased. b) Potentials constructed using these pair
correlation functions (Eq. (5)). ¢) A comparison with pair
correlations obtained from direct Monte Carlo simulations of
particles interacting via these potentials.

The regularization through division by go(|h|) is neces-
sary because there is strong clustering at very small dis-
tances in height space [13], which reflects the behavior
of very small forces, much smaller than the repulsive
force that needs to be overcome to create frictional con-
tacts [6, 13]. In addition, we add a short ranged repulsive
potential to Va(h) that prevents clustering of vertices at
the smallest force scales [13]. The resulting potential
qu(i;) thus represents interactions at intermediate and
large scales in the force tilings. This potential encodes
the full anisotropy of go (ﬁ), and as we show below, this is
crucial for understanding the evolution of the anisotropy
of the stress tensor. To check whether such a poten-
tial is successfully able to reproduce the original corre-
lations, we perform Monte Carlo (MC) simulations, as
described in detail in [13]. The go(h) obtained from the
MC simulations are shown in Fig. 2, and demonstrate

that Va(h) captures the properties at all but the smallest
force scales.

The force tiles obtained from the simulations form an
ensemble with microstates defined by the set C = {ﬁl}
The fundamental assumption we make is that this ensem-
ble of NESS is characterized by an a priori probability
p(C) o< exp(=V(C)), where V/(C) =37, .; Vo,o(hi — hy)
is the analog of the total energy of a configuration in



equilibrium statistical mechanics. We then characterize
the properties of the NESS by this generalized statistical
ensemble. The partition function of the system is then

1
N,!

N,
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A=l i
ANv exp(—€g,5(A,Ny))

= / dA eXp(—]:A;(b’U).
0

Zpo = / dAexp (—Nvf;A) X
0

(6)

where the positions ﬁl are confined to be within the box
with area A, which is related to stresses since this is
the area of the force tiling. Here f; plays the role of a
pressure in the “NPT” ensemble in equilibrium statistical
mechanics of particles, and controls the fluctuations of A.
Since N is observed to be small in the simulations, we
assume that it vanishes, which leads to the relationship
A=0c*(1/p*-1) [13].

We next construct a mean-field theory of x4 by minimiz-
ing the effective “free-energy” function, Fa.¢ ., referred
to in the following as F. In order to compute F, we
sample €4 5(A, Ny) (Eq. (6)). Details of the sampling
method are provided in [13]. Transforming from A to p,
the “free energy” per vertex is given by

f(u;¢,0) = F/N,

As an example, the functions f(u; ¢, ) obtained at im-
posed stress 0,y = 1000¢ at different packing fractions
are shown in the inset of Fig. 3. We fix f; = 6.5 x 10~
to reproduce the observed value of p at ¢ = 0.8 and
Ozy = 10000.

Phase Diagram for DST: Finally, minimizing
[ (w3 &, U)v we  compute /1'(¢7 U) = o, 011})’ and
deduce the viscosity and the DST phase diagram. The
variation of p is provided in Fig. 4. We find that p de-
creases as the packing fraction ¢ and the confining shear
stress o, are increased, in agreement with the variation
observed directly in the simulations [13]. Unfortunately,
there are no experimental measurements of u(¢,o) in
DST suspensions. However, insight may be gained
from three-dimensional simulations of non-thickening
suspensions where the second normal stress difference No
is found to be roughly linear with P [19], and thus the
behavior of Ns gives a reasonable approximation of that
of P. In particular, Cwalina and Wagner [20] provide N
which is largely in agreement with the present simulation
method [21]. By the present simulation method applied
to three-dimensional suspensions, Na/o,,, increases (i.e.
the “friction coefficient” of o4, /N2 decreases) at DST as

(7)
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FIG. 3: (Color online) Sampled values of €4, (11, Ny) for N, =
1024 and o4y /00 = 100, with V5 derived from simulations at
different packing fractions ¢ (Eq. (5)). (Inset) f(u; ¢, o) for
N, = 3000, and f; = 6.5 x 10~*. The minimum of f(u;¢,o)
provides the value of 1 at each (¢, 0).

seen in Fig. 6 of ref. [6], and thus it appears reasonable
that the experimental ratio of o,,/P also decreases at
this transition.

The DST boundary [13] is defined by the condition
% = 0. This relationship, can be translated to one in

terms of p using Eq. (3):

dp
dogy

Ozy

"

K= He
= . 8
1+ pe (®)

Using the values of u(¢,0) obtained by minimizing
f(w; ¢,0), we find that Eq. (8) is satisfied at two val-
ues of the shear stress for 0.785 < ¢ < 0.8 if we choose
e to be 1(0.8,100) (Fig. 4). This choice implies that
the viscosity diverges at ¢ = 0.8 in the limit of large o,
where all contacts are frictional. The inset of Fig. 4 de-
marcates the DST region obtained from solving Eq. (8).
This region is not sensitive to the choice of u. as long
as it is in the vicinity of the smallest value observed at
¢ ~ 0.8. The precise numerical values are not crucial
as Eq. (8) will have two solutions as long as the generic
features in go(h) that we obtain from the simulations are
preserved. The results for n as a function of ¢ and o,
are shown in [13].

Conclusion and Outlook: We have identified a cor-
relation function that exhibits significant changes in
anisotropy across the DST transition. The correlations
are in force space, and reflect the collective behavior trig-
gered by changes in the nature of the contact forces,
which often arise due to small changes in grain positions
that are difficult to identify in any positional correlations.
Remarkably, a theory based on pair potentials in force
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FIG. 4: (Color online) Variation of the macroscopic friction
coefficient p, corresponding to the minimum of the free en-
ergy function in Eq. (7). We find that p decreases as packing
fraction ¢ and the confining shear stress o., are increased.
(Inset) Plot of Eq. (8) showing the appearance of two so-
lutions at ¢ = 0.79, and the second solution moving out to
Ozy — 00 at ¢ = 0.8.

space describes the macroscopic rheology. Our work also
highlights the changes in the macroscopic friction coef-
ficient, accompanying the DST transition. The decrease
in p indicates that the pressure increase for an imposed
increase of shear stress is larger in the frictional branch
of DST than it is in the frictionless branch of DST [15].
There is, however, no singular change in u across the DST
transition. A decrease in u(¢, o) has also been associated
with the shear-jamming transition in dry grains [22]. In
that system, overlap order parameters of the force tile
vertices, evocative of spin glass order parameters, char-
acterized shear jamming [22]. In the DST steady states,
these overlap parameters correspond to autocorrelation
functions of the vertices of force tiles. In the future, we
plan to use our statistical ensemble to relate these auto-
correlation functions to changes in viscosity accompany-
ing the DST transition. Note that in equilibrium, stress
autocorrelations are related to the viscosity through the
Green-Kubo relations.
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