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We present a model for the order-disorder transition of symmetric A-B diblock copolymer melts
in which the disordered phase is treated as bicontinuous network, and in which self-consistent field
predictions of properties of an analogous ordered network are used to estimate some properties.
Such a model is shown to accurately predict the latent heat of this transition. The dependence
of the location of the transition upon the invariant degree of polymerization N is shown to be
consistent with a simple hypothesis that the disordered bicontinuous structure is stabilized relative
to an analogous ordered network by a nearly constant entropy per network junction.

Block copolymer melts can undergo an order-disorder
transition (ODT) from a disordered phase to a variety of
spatially periodic ordered structures. The ODT of sym-
metric AB block copolymers, with A and B blocks of
equal volume, has long been of particular theoretical in-
terest as an example of a type of fluctuation-induced first
order transition that was first considered by Brazovskii
[1], and later predicted for symmetric diblock copoly-
mers by Fredrickson and Helfand [2]. The Fredrickson-
Helfand (FH) theory of this transition assumes that the
lamellar phase remains weakly segregated at the ODT.
FH showed that this would occur for sufficiently high
molecular weights. Within the experimentally relevant
range of molecular weights, however, both experiments
and simulations have shown that the ordered and dis-
ordered phases are both rather strongly segregated near
the ODT, and contain nearly pure domains of A and B
monomers [3–5]. In this regime, the disordered phase
near the ODT appears to have a disordered bicontinuous
network structure qualitatively similar to that of the bi-
continuous microemulsion phase of some ternary systems
[3, 6–8]. To describe this regime, one should use a the-
oretical approach that can describe strongly segregated
structures. In this paper, we consider a model of the
disordered bicontinuous structure near the ODT that is
based on a self-consistent field theory (SCFT) description
of an analogous periodic structure.

Understanding of the ODT is currently based on a
combination of SCFT and the FH theory. SCFT pre-
dicts that symmetric diblock copolymer melts should un-
dergo a continuous 2nd order transition between disor-
dered and lamellar phases at a critical value of χN given
by (χN)SCF

ODT = 10.495, where χ is an effective Flory-
Huggins parameter and N is degree of polymerization [9].
The FH theory instead predicts a first order transition
at a higher value of (χN)ODT that depends on a dimen-
sionless parameter N = N(cb3)2, in which c is monomer
concentration, and b is statistical segment length [2]. The

quantity N
1/2 ≡ cR3

e0/N is equal to the ratio of the vol-
ume R3

e0 pervaded by a polymer to the occupied steric
volume N/c, where Re0 =

√
Nb.

Simulations [4, 5, 10] have confirmed that various prop-

erties of symmetric diblock copolymer melts exhibit a
universal dependence on N , as first predicted by the FH
theory. Simulations have also shown, however, that the
assumption of weak segregation underlying the FH the-
ory is valid only for N � 104 [4, 5]. At typical ex-
perimental value of N ' 102 − 104, both ordered and
disordered phases contain rather strongly segregated A
and B domains near the ODT. Furthermore, SCFT has
been shown to give quite accurate predictions for the free
energy and other properties of the lamellar phase in this
regime [4, 5]. The inaccuracy of SCFT predictions for
(χN)ODT is thus primarily the result of the inability of
SCFT to describe a strongly correlated disordered phase.
Interestingly, comparison to SCFT predictions showed
that, over the range (χN)SCF

ODT < χN < (χN)ODT , the
free energy and degree of A/B contact in the disordered
phase change with χN in a manner similar to that pre-
dicted by SCFT for the ordered lamellar phase. This ob-
servation suggests that characteristics of local structure
in the disordered phase (e.g., the degree of segregation
and typical domain size) are similar to those predicted
by SCFT for an ordered phase over this range. Because
the disordered phase has a bicontinuous morphology near
the ODT, however, we expect it to more closely resemble
a periodic network structure than a lamellar phase.

In this paper, we discuss a phenomenological model
of the disordered phase near the ODT that is based on
the use of SCFT to predict properties of an analogous
ordered bicontinuous network. The motivation for this
approach is analogous to the motivation for the study of
cell models of simple liquids [11–13], which rely on the
observation that local environments in a strongly corre-
lated liquid often closely resemble those in an analogous
ordered structure.

The first step in developing such a model is to choose
one of the many possible network structures of a diblock
copolymer melt [14] as an optimal “surrogate” for the
structure of the disordered phase. Our proposed choice
is based on the following criterion: Because we focus here
on symmetric AB copolymers, we seek a structure in
which the A and B domains are geometrically equiva-
lent bicontinuous regions. The skeleton of either domain
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in such a bicontinuous structure can be described as a
network of “tubes” that meet at junctions, with three or
more tubes meeting at each junction. Prior work [14, 15]
indicates that the most favorable network structures in
melts of monodisperse diblock copolymers contain only
three-fold junctions. We thus seek a network with only 3
fold junctions. The only periodic network that we know
of that meets these two criteria is the single gyroid (SG)
cubic structure, with space group I4132. We thus choose
this structure as our surrogate for the disordered phase.
The SG structure is distinct from both the double gyroid
(DG) structure of space group Ia3d, which contains two
disconnected networks of one component in a matrix of
the other, and the Fddd network [16, 17], both of which
are equilibrium phases of slightly asymmetric copolymers
that have topologically inequivalent A and B domains.

A good surrogate structure should also have a compar-
atively low SCFT free energy. Let g denote free energy
per chain divided by the thermal energy kBT . For each
phase other than the lamellar (L) phase, let ∆g = g− gL
denote the difference between the value of g in that phase
and the value gL in the lamellar phase. Figure 1 shows
SCFT predictions for ∆g for symmetric copolymers, de-
noted by ∆gSCF , for the SG and DG networks and the
disordered (D) phase. No Fddd solution to SCFT was
found for symmetric copolymers. Because SCFT predicts
that the lamellar phase is stable for all χN > (χN)SCF

ODT ,
∆g > 0 for all other phase over this range. Note that the
free energies of the DG and SG networks are similar and
significantly lower than that of the disordered phase, indi-
cating close competition among candidate network struc-
tures. The SG structure is, however, slightly preferred
over the DG structure over a range (χN)SCF

ODT < χN < 24
that includes the entire range of values of (χN)ODT ob-
served in simulations on systems with N > 200. The
single gyroid is thus the lowest free energy network we
have found in the regime of interest.

Because the ODT is a first order transition, it has
a nonzero latent heat. The enthalpy in each phase of
interest and the degree of contact between A and B
monomers can both be related to the value of the di-
mensionless derivative g′ ≡ ∂g/∂(χN) [4, 5]. In SCFT,
the value of g′ in each phase is equal to the overlap inte-
gral g′ =

∫
dr φA(r)φB(r)/V , where φA(r) and φB(r) are

local volume fractions of A and B monomers at point r,
and V is the volume of the region over which the integral
is evaluated. Hence, g′ measures the extent of contact
between A and B monomers. In an experimental system
in which χ(T ) is a function of absolute temperature T ,
it can be shown [5] that g′ is related to enthalpy h per
chain by the relation

g′ = h

[
N

dχ(T )

d(1/kBT )

]−1
. (1)

Let ∆g′ = g′D − g′L denote the difference between values
of g′ in the disordered and lamellar phases. Eq. (1) im-

FIG. 1. Plot of ∆gSCF vs. χN for the single gyroid, dou-
ble gyroid and the disordered phases, where ∆gSCF is the
difference between the free energy per chain and that in the
lamellar phase, divided by kBT . Inset : A cubic unit cell of
the single gyroid (SG) phase.

plies that the latent heat of the transition (i.e., change
in enthalpy) is proportional to the value of the difference
∆g′ at the ODT. In a strongly segregated structure, A
and B monomers come into contact primarily along in-
terfaces between A and B domains, and the change ∆g′

arises primarily from the change in the amount of A/B
interfacial area per volume upon transformation from a
bicontinuous to a layered structure.

Both experiments and simulations have recently quan-
tified the latent heat of this transition, and been shown
to agree [18, 19]. As a simple model for the latent
heat, we propose approximating ∆g′ at the ODT by the
difference between SCFT predictions for g′ in the sin-
gle gyroid and lamellar phases, evaluated at the value
(χN)ODT observed in simulations. A test of this approx-
imation is shown in Fig. 2. There, the solid line shows
SCFT predictions for the ratio ∆g′/g′L as a function of
χN , where ∆g′ = g′SG − g′L is the difference between
the SCFT predictions for values of g′ in the SG and L
phases. Symbols instead show values of ∆g′/g′L obtained
by analyzing order-disorder transitions in MD simula-
tions [5]. The abscissa of each symbol is equal to the
value of (χN)ODT observed in the corresponding simu-
lation. Because (χN)ODT is a decreasing function of N ,
lower values of (χN)ODT correspond to larger values of
N . Simulations yield a relatively narrow range of values
∆g′/gL ' 0.06 - 0.08 for systems N ' 200− 8000, corre-
sponding to a decrease of 6-8 % in the amount of inter-
facial area per volume upon transformation to a lamellar
phase. SCFT predictions for g′SG − g′L approach zero at
(χN)SCF

ODT because SCFT predictions for g′ become the
same in all phases at this critical value. Over the range of
values (χN)ODT ' 13−23 over which ∆g′ has been mea-
sured in simulations, however, SCFT yields predictions
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FIG. 2. Fractional change in g′ at the ODT vs. χN , from
MD simulations (symbols) and SCFT (line). Symbols show
values of ∆g′/g′L from MD simulations vs. the observed
value (χN)ODT . Different symbols indicate results of dif-
ferent simulation models, indicated by the labels H, S1, S2,
and S3 used in Ref. [5]. For the SCFT prediction (line),
∆g′(χN) = g′SG(χN) − g′L(χN).

for ∆g′/gL ' 0.06 - 0.07 that depend very weakly on N
and that are only slightly less than the values obtained
from simulations.

We now consider the thermodynamics of the ODT.
Let ∆g denote the difference ∆g = gD − gL between
the free energy per chain in the disordered and lamellar
phases, normalized by kBT . At the ODT, ∆g = 0. Let
∆gSCF = gSG−gL instead denote the corresponding dif-
ference between SCFT predictions for the free energies of
the SG and L phases.

We picture the disordered phase near the ODT as a
statistical ensemble of bicontinuous morphologies of dif-
ferent topology. To make this more precise, imagine
dividing the set of molecular microstates in the disor-
dered phase into subsets such that the topology of the
A/B interface is the same for microstates in the same
subset. Each such subset thus defines a subensemble
of microstates with the same network topology, corre-
sponding to a single local minimum in the free energy
surface, or a single “inherent” structure [20, 21]. Let
∆g denote the average of the difference between the free
energy per chain in such a subensemble and that in a
lamellar phase, normalized by kBT and averaged over
the distribution of topologies found in the disordered
phase. The typical environment of a molecule in a dis-
ordered network of predominantly three-fold junctions is
presumably similar to that in an ordered SG network. As
a first step, it is thus natural to try approximating ∆g
near the ODT by the SCFT prediction ∆gSCF for a SG
phase. Because SCFT predicts a stable lamellar phase for
χN > (χN)SCF

ODT , and thus predicts ∆gSCF > 0, SCFT
alone cannot explain why the disordered phase remains

stable at χN > (χN)SCF
ODT . The disordered bicontinuous

phase is, however, also stabilized relative to the average
free energy of a network of fixed topology by a topological
entropy that arises from the existence of many possible
network topologies. At a formal level, we may take this
into account be writing ∆g = ∆g −∆s in which ∆s is a
dimensionless structural entropy per chain (i.e., entropy
divided by kB).

A picture of the disordered phase as an ensemble of
random networks suggests that the structural entropy
per junction should be a number of order unity. Let
∆S = M∆s denote the dimensionless topological en-
tropy per junction, where M denotes the average number
of chains per network junction. Let ∆GSCF be the corre-
sponding difference between SCFT predictions of gyroid
and lamellar free energy, per junction of the SG phase,
normalized by kBT . A minimal phenomenological model
of the ODT may be constructed by: (a) Approximating
∆g by ∆gSCF , thus mimicking properties of typical dis-
ordered network by those of a periodic SG network, and
(b) assuming that the value of ∆S at the ODT is of order
unity and almost independent of N . Setting ∆g = 0 at
the ODT yields a prediction that the ODT should occur
at a value of χN at which ∆GSCF (χN,N) = ∆S, in
which ∆S is an order unity dimensionless number that
depends very weakly on N .

The SCFT free energy difference per junction ∆GSCF

is given by a product ∆GSCF = M∆gSCF (χN), where
M is the SCFT prediction for the number of chains per
network junction in the SG phase. The unit cell of the
SG phases is a cube of length a that contains 8 junctions
in the A or B network. The number of chains of volume
N/c per junction is thus M = a3c/(8N) = N

1/2
M̂(χN),

where M̂ = (a/Re0)3/8 is a function of χN alone. The
difference ∆GSCF per junction can then also be ex-
pressed as a product

∆GSCF (χN,N) = N
1/2
Ĝ(χN) (2)

in which Ĝ(χN) = M̂(χN)∆gSCF (χN) is a function of

χN alone. Because ∆GSCF is proportional to N
1/2

, and
Ĝ(χN) is an increasing function of χN that vanishes as
χN approaches (χN)SCF

ODT , the requirement that the value
of ∆GSCF at the ODT be almost independent of N nat-
urally yields a prediction for (χN)ODT that is a mono-
tonically decreasing function of N that approaches the
SCFT prediction (χN)ODT = (χN)SCF

ODT as N →∞.
The most important qualitative prediction of this

model is simply that the ODT occurs when ∆GSCF

reaches an order unity value that is almost indepen-
dent of N . This can be directly tested by compar-
ing SCFT predictions to MD simulations. It has been
shown [4, 5] that the value of (χN)ODT in a variety of
coarse-grained simulation vary with N as approximately

(χN)ODT = 10.495 + 41.0N
−1/3

+ 123N
−0.56

. By us-
ing this empirical formula for (χN)ODT (N) to determine
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FIG. 3. SCFT prediction ∆GSCF (χN,N) of the difference
between the free energy of the SG and L phases, per junc-
tion of the SG phase and normalized by kBT , measured at
the value χN = (χN)ODT (N) observed in simulations. The
horizontal dashed line shows a best fit value of ∆GSCF = 2.15

values of χN used in a series of SCFT calculations, we
have computed ∆GSCF (χN,N) at χN = (χN)ODT as a
function of N . Fig. 3 shows results of this computation
for N = 200−10, 000. This comparison show that SCFT
prediction for the free energy of the SG phase exceeds
that of the L phase by approximately 2kBT per junction
at the ODT, with rather little dependence on N , consis-
tent with our hypothesis of a nearly constant structural
entropy per junction. Fig. 4 demonstrates the same idea
in a different form, by comparing simulation results for
(χN)ODT to predictions of a model in which we assume
that ∆GSCF reaches a constant value ∆GSCF = 2.15 at
the ODT.

The model discussed above is intended to describe only
the strong-segregation regime N <∼ 104 in which the FH
theory fails. If applied to much larger values of N , this
model would predict a shift (χN)ODT − (χN)SCF

ODT ∝
N
−1/4

, which is different from the N
−1/3

scaling pre-

dicted by the FH theory. This N
−1/4

asymptotic scal-

ing follows from the fact that ∆GSCF ∝ N
1/2

[(χN) −
(χN)SCF

ODT ]2 for χN very near (χN)SCF
ODT . Because the

FH theory is expected to be valid for large N , we assume
that the model proposed here breaks down in the weak-
segregation regime N � 104 in which the FH theory is
valid, and vice versa.

The view of the disordered phase underlying this anal-
ysis is somewhat similar to that underlying our under-
standing of the bicontinuous microemulsion phase of sur-
factant/oil/water systems [22–24] or the bilayer sponge
phase of binary surfactant/water systems [25–28]. A bi-
continuous microemulsion or sponge phase is stabilized in
part by a structural entropy of order kB per network junc-
tion, as suggested above. In these swollen surfactant sys-
tems, however, bicontinuous structures are also favored
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FIG. 4. Comparison of measured and predicted values of
(χN)ODT vs. N . Symbols are values measured in simula-
tions. Solid line is a model that assumes ∆GSCF has a con-
stant value at the ODT, for which we take ∆GSCF = 2.15.
Dotted line is the empirical formula of Ref [4].

over layered structures by differences in the entropy aris-
ing from undulations about the average membrane con-
formation in a system of constrained topology. This un-
dulation entropy is known to be greater for topologies
that impose an average curvature. This effect lowers the
free energy cost of curvature, and so has been described
as a renormalization of membrane bending rigidities [28–
30]. Our analysis of the ODT in block copolymer melts
suggests that the disordered phase is stabilized by a free
energy of order kBT per network junction that is not cap-
tured by SCFT, but does not tell us the physical origin
of this difference. The missing free energy could, for ex-
ample, arise in part from subtle differences in undulation
entropy, as well as topological entropy.

This work explores a proposed analogy between a
strongly correlated disordered phase of a symmetric di-
block copolymer melt near its ODT and a periodic bi-
continuous structure. We argue that the periodic single-
gyroid (SG) structure is a natural surrogate for the disor-
dered phase. By comparing simulation results for the la-
tent heat to SCFT predictions, we show that the amount
of A/B contact along interfaces in the disordered phase
near the ODT is very close to that predicted by SCFT for
the SG structure. The observed dependence of (χN)ODT

on N is shown to be consistent with a simple hypothesis
that the disordered bicontinuous phase remains stable at
values of χN > (χN)SCF

ODT only where the SCFT free en-
ergy of the SG phase exceeds that of the lamellar phase by
less than a critical value of order kBT per junction. This
suggests a view of the disordered phase near the ODT in
systems of relatively short chains analogous to our view
of the bicontinuous microemulsion phase, and comple-
mentary to the weak-segregation picture of Fredrickson
and Helfand.
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