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Topological phases, such as Chern insulators, are defined in terms of additive indices that are stable against
the addition of trivial degrees of freedom. Such topology presents an obstruction to any Wannier representation,
namely, the representation of the electronic states in terms of symmetric, exponentially localized Wannier func-
tions. Here, we address the converse question: Do obstructions to Wannier representation imply stable band
topology? We answer this in the negative, pointing out that some bands can also display a distinct type of “frag-
ile topology.” Bands with fragile topology do not admit any Wannier representation by themselves, but such a
representation becomes possible once certain additional trivial degrees of freedom are supplied. We construct
a physical model of fragile topology on the honeycomb lattice that also helps resolve a recent puzzle in band
theory. This model provides a counterexample to the assumption that splitting of an “elementary band represen-
tation” introduced in [Nature 547, 298–305 (2017)] leads to bands that are individually topological. Instead, half
of the split bands of our model realizes a trivial band with exponentially localized symmetric Wannier functions,
whereas the second half possess fragile topology. Our work highlights an important and previously overlooked
connection between band structure and Wannier functions, and is expected to have far reaching consequences
given the central role played by Wannier functions in the modeling of real materials.

Introduction—In recent years, there has been rapid devel-
opment of our understanding of topological phases. One im-
portant area of activity has been to classify all possible, dis-
tinct gapped phases by relating them to appropriate mathemat-
ical classification schemes. For noninteracting fermions in the
presence of only internal symmetries (such as time reversal
symmetry), a classification of states with a bulk energy gap
has been obtained using K-theory [1]. Conceptually, states
with nontrivial topology are readily identified from their gap-
less edge states, while the trivial state has boundary that can
be gapped without breaking symmetry [2–5]. An important
feature of such classification schemes is the notion of stabil-
ity, that is, the requirement that a topological phase is robust
to the addition of trivial, weakly coupled degrees of freedom
[1–6].

For crystalline systems, however, new physical complica-
tions arise. First, the presence of crystalline symmetries can
protect new kinds of topological phases [7, 8], which are
captured by extensions of the K-theory classification scheme
to the case of crystalline symmetries [9–13]. Unlike phases
protected solely by internal symmetries, phases protected by
crystalline symmetries may not possess any gapless surface
states, as it may not be possible to find a surface that respects
all the protecting symmetries. Second, there are cases where,
despite a clear bulk distinction between two phases, it is phys-
ically unclear which one is to be labelled trivial and which
topological; rather, what is well defined is relative topology,
which concerns if two systems are distinct phases separated by
a bulk gap closing when symmetries are preserved throughout
the deformation. For instance, spatial symmetries can lead to
mutually distinct product states [14]. Specializing the discus-
sion to electronic phases, product states correspond to strict
atomic insulators, defined as the full filling of a set of strictly
localized orbitals. Their insulating nature can be explained
even if one models electrons as classical particles trapped in
periodic potential wells [15]. Such phases do not have any

symmetry-protected quantum entanglement, and therefore we
will label all atomic insulators as trivial [15–19].

In contrast, a weakly correlated crystal is insulating when-
ever the electronic energy bands, a concept defined in the mo-
mentum space, are gapped at the Fermi energy. This is more
general than the real-space, atomic picture we described, and
a topological band insulator arises precisely when there is an
obstruction in describing the system using any atomic picture
[15–19].

The contrast between the momentum- and real-space de-
scriptions of a band insulator is closely related to the notion
of Wannier functions, which is a generalization of atomic or-
bitals. Consider a group of isolated bands. Following the
definitions above, we say they are trivial if and only if they
can be represented in terms of exponentially localized Wan-
nier functions that preserve all symmetries. For brevity, we
will refer to this property as “Wannier-representable,” with the
understanding that the Wannier functions involved are expo-
nentially localized and respect all symmetries. In this termi-
nology, when the set of valence bands of a system is Wannier-
representable, the ground state is a trivial atomic insulators;
conversely, a set of topological bands will be obstructed from
any Wannier representation.

It is important to connect our discussion to the more con-
ventional notion of (symmetry-protected) topological indices
of band structures. Familiar topological phases characterized
by, say, a nontrivial Chern number will automatically feature
a Wannier obstruction [16]. More generally, such Wannier
obstructions are present for any band structure with a nontriv-
ial K-theoretic topological index [1, 9–13], provided that the
index is not describing the mutual topology between atomic
insulators [11, 18].

However, the converse need not be true, i.e., there could
be examples of bands which are not Wannier representable,
even when all the K-theoretic indices are compatible with a
trivial phase. This possibility originates from a strong sense
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of robustness (known technically as “stable equivalence”) de-
manded in the K-theory-based classification of band insula-
tors, which is more stringent than what the physical problem
calls for [9]. We will present a concrete example in this work,
where we demonstrate that a set of Wannier-obstructed bands
can be explicitly trivialized simply by the presence of an ad-
ditional atomic insulator. The band topology in the Wannier-
obstructed bands is therefore weaker than that of familiar, sta-
ble topological phases captured within K-theory, and we will
refer to it as “fragile topology.”

We now highlight some applications of the fragile topology
concept, both to the conceptual as well as to the practical as-
pects of band structures. First, we stress this concept has im-
portant implications for the modeling of correlated materials.
There, one seeks to capture the bands of interest by a tight-
binding model into which one incorporates electron-electron
interactions. The tight-binding model itself is obtained from
the Wannier functions, hence if the relevant bands possess
fragile topology, the resulting Wannier obstruction implies
that this canonical procedure will fail at the first step. It can be
remedied only by incorporating additional carefully selected
orbitals. That this is not an academic issue was emphasized
in recent discussions [20–23] of the band structure of twisted
bilayer graphene (TBG), where ground-breaking experiments
have discovered a correlated insulator and a superconductor
[24–26]. It was pointed out in Ref. 20 that the relevant bands
in TBG suffers from a Wannier obstruction if all symmetries
are included, despite the absence of any know stable topolog-
ical phase in this symmetry setting.

Second, we point out a proper understanding on fragile
topology is crucial for utilizing the recent proposal in Refs.
19, 27, and 28, which asserted that an exhaustive compari-
son of symmetry representations in momentum space and real
space will lead to an efficient diagnosis of topological materi-
als. We clarify that, if the supposedly topological filled bands
feature only fragile but not stable topology, the actual topo-
logical properties of the materials could be trivialized merely
by the presence of filled bands corresponding to closed-shell
electrons. Finally, we note that although topological proper-
ties of the (non-abelian) Berry phase of band structures are
commonly taken as a defining feature of topological crys-
talline phases [29–33], they imply only a Wannier obstruction
and not necessarily stable topology.

A honeycomb lattice model—We will begin by describing
our construction of a four-band model on the honeycomb lat-
tice, which splits into conduction and valence bands, each
consisting of two bands, separated by a band gap. We will
later show that the valence bands of our model are trivial,
whereas the conduction bands feature fragile topology.

Consider a honeycomb lattice with the origin placed at the
center of a hexagon and a pz orbital localized to each of the
sites. We assume the system is symmetric under time-reversal
but not spin rotations, which is a natural setting in the pres-
ence of strong spin-orbit coupling. We will assume the spa-
tial symmetries of the wallpaper group No. 17 (SG No. 183),
which describes the symmetries of the 2D system placed on a

symmetry-matched substrate [19, 27, 34, 35]. We denote this
wallpaper group by G, and let P be its point group (6mm).
P is generated by a six-fold rotation about the hexagon center
and a mirror along a line passing through a nearest-neighbor
bond. We will always assume periodic boundary conditions.

Our goal is to construct a model with fragile topology. To
this end, one should first rule out the presence of stable topol-
ogy. In our context, such a model can be constructed as fol-
lows: Starting with the Kane-Mele model [34, 35] with inver-
sion symmetry (Fig. 1a), which has a nontrivial Z2 quantum
spin Hall index, we add additional terms to induce a band in-
version at Γ (Fig. 1b). This trivializes the Z2 quantum spin
Hall index. However, as the inversion symmetry combines
with a 2D C2 rotation into a mirror in the plane parallel to
the system, one can only conclude that the system has an even
mirror Chern number [7]. The last step, therefore, is to break
inversion symmetry, and hence the mentioned mirror. This
gives a model without any known topological invariant.

We now construct our model Ĥ0 explicitly. This is achieved
by first specifying a collection of time-reversal symmetric
bonds, and then symmetrizing by summing over all the g-
related bonds for g ∈ G. For the bond i (= 1, 2, . . . , 5) repre-
sented by an arrow going from site x to y (Fig. 1c), we define

ĥ(i) ≡
∑

α,β=↑,↓

ĉ†y,α

(
τ (i)σ0 + iλ(i) · σ

)
αβ
ĉx,β , (1)

where ĉx,α and ĉy,α respectively denote the fermion annihi-
lation operators for a spin-α electron localized at sites x and
y, and σj’s denote the standard Pauli matrices [36] . Here,
(τ (i), λ

(i)
1 , λ

(i)
2 , λ

(i)
3 ) are four dimensionless real parameters

defining the electron hopping along bond i. Their chosen
numerical values are tabulated in the Supplemental Materials
(SM) [37]. Note that we have optimized our model for achiev-
ing a more sizable band gap, which leads to longer range hop-
ping (up to fifth-nearest neighbors). Nonetheless, we stress
that only finite-range hoppings are considered, and so long as
both the band gap and symmetries are maintained the general
features we describe below will persist against perturbations.

The honeycomb model is then defined by

Ĥ0 =
t

|P|

5∑
i=1

∑
g∈G

ĝ ĥ(i)ĝ−1 + h.c., (2)

where |P| = 12, and t > 0 is an overall energy scale. As
shown in Fig. 1d, a gap at half filling is found at all high-
symmetry momenta. Considering also the interior of the Bril-
louin zone (BZ), one finds a band gap [38] of 0.39t. For com-
parison, the valence bandwidth is ∼ 2t.

Our next goal is to analyze the band topology present in
Ĥ0. In particular, we will first establish that the valence bands
are trivial.

Trivial valence bands—As a first check, we construct sym-
metric Wannier functions of the valence bands [39, 40]. No
obstruction was encountered in this process (SM), and the re-
sults are visualized in Fig. 1e. The weight of a Wannier func-
tion as a function of r, the distance away from its charge center
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(which sits at the center of a hexagon), is shown in Fig. 1f. The
weight decays exponentially as r →∞, decaying by 4 orders
of magnitude in 10 lattice constants. This implies the valence
bands of Ĥ0 admit symmetric, exponentially localized Wan-
nier functions, and therefore the corresponding band insulator
is trivial. In the SM, we also provide an alternative proof of
its triviality through an adiabatic, symmetric deformation to
an explicit atomic limit.
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FIG. 1. Model for fragile topology. (a,b) Construction of model
with fragile topology. (a) The nontrivial Z2 index of the Kane-Mele
model [34, 35] can be diagnosed from the inversion eigenvalues of
the bands [41], as we labeled for Γ. The role of spin-orbit coupling
is to open a gap. (b) A further band inversion at Γ trivializes the
Z2 index. (c) Terms in the Hamiltonian Ĥ0. (d) Band structure of
the honeycomb Hamiltonian, with a clear band gap at a filling of two
electrons per unit cell. (e) A symmetric Wannier function w↑(r) cen-
tered at the origin. a denotes the lattice constant. The other Wannier
function, also centered at the origin, can be obtained by applying
time-reversal. We visualize it by an arrow and a circle attached to
every site at which |w↑(r)|2 > 0.3 × 10−2. Red (blue) filled cir-
cles indicates that, locally, the spin is tilting up (down), and their
sizes represent the relative weights of the Wannier function. The ar-
row shows the in-plane component of the spin. (f) |w↑(r)|2 decays
exponentially at large distances (red dashed line).

Nontrivial conduction bands—Since the conduction bands
of Ĥ0 combine with the valence bands to form an atomic in-
sulator (namely, the pz orbitals localized to the honeycomb
sites), the triviality of the valence bands rules out any stable
topology in the conduction bands. However, based solely on
the symmetry representations of the conduction bands (avail-
able, e.g., on the Bilbao crystallographic server [27]), one
can see that the conduction bands cannot be Wannier repre-
sentable. This is because any atomic insulator at a filling of
two electrons per unit cell must have the electrons localized
to the triangular lattice sites, and one can check that no such
atomic insulator possesses the same set of symmetry represen-
tations as the conduction bands at all momenta [19, 27, 28].
As symmetry representations are bulk quantities which cannot
be modified without a band-gap closing, they serve as a non-

trivial topological invariant for the conduction bands. Note
that a representation-based invariant is as robust as that aris-
ing from more involved objects, say from the Wilson loops
[29–33].

It is conceptually revealing to connect our present observa-
tions to the discussions in Ref. 18, which discussed how sym-
metry eigenvalues can inform band topology in two different
ways. The first is embodied in the notion of “symmetry-based
indicators of band topology,” which is concerned with stable
topology. The second diagnosis is more subtle, and is tied to
the distinction between the physical stacking and the formal
addition of atomic insulators, where a (formal) subtraction be-
tween atomic insulators is allowed only in the latter but not the
former. By formal subtraction, we mean the following: let A,
V and C be gapped bands such thatA can be viewed as arising
from stacking the bands V and C, i.e., A = V ⊕ C. Then we
can formally identify C as the difference between A and V .
Crucially, even when both A and V above are atomic insula-
tors, C may not admit a Wannier representation. Such is the
case for the conduction bands (C) of Ĥ0, which can be viewed
as subtracting the valence bands (V), an atomic insulator with
electrons localized to the triangular sites, from the atomic in-
sulator formed by full filling of the honeycomb sites (A). In
fact, such systems are prime candidates for fragile topology,
since by definition the symmetry representations do not indi-
cate any necessary stable topology. We also note that some
“filling-enforced quantum band insulators” discussed in Ref.
15 also sit in this class [18], and therefore they might be early
examples of fragile topology.

Fragile topology and band representations—Having estab-
lished the existence of fragile topology in the conduction
bands of the concrete model Ĥ0, we now discuss its general
implications. As we have alluded to, the key difference be-
tween stable and fragile topology descends from the notion
of “stable equivalence” in K-theory (Fig. 2a). It is instructive
to provide a more precise definition. Consider an isolated set
of bands, and we ask if it can be represented in terms of ex-
ponentially localized Wannier functions that respect all sym-
metries. If this is possible, the set of bands is trivial. If this
fails, we can further ask: can we add to this set another set
of trivial bands, derived from an atomic insulator, and then
obtain localized Wannier functions? If yes, our original set
only possesses fragile topology (Fig. 2b,c). By this definition,
the valence bands of our model are trivial, and the conduc-
tion bands possess fragile topology. We also provide a more
physical perspective on the preceding discussion in the SM.

Next, we connect the phenomenology of fragile topology
to a recent proposal [19, 27, 28] that the theory of band repre-
sentations, developed by Bacry, Michel, and Zak [42–45], can
lead to a general classification of topological band insulators.
(Please see the SM for a brief introduction to the notion of
“band representations.”) A key idea in this proposal is that of
an “elementary band representation” (EBR) [42–45], which
has the defining feature that, if it splits in momentum space
into disconnected (i.e., separated by a band gap) conduction
and valence bands, then the two sets of bands cannot be si-
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FIG. 2. Fragile topology and decomposable elementary band rep-
resentations. (a) In a K-theory-based classification[1, 9–13], it could
be that two band insulators a and b are not smoothly connected, but
the obstruction is resolved once we append to both sides an addi-
tional set of bands c. We say a and b are stably equivalent, denoted by
a ∼s b. (b) Using similar ideas, we introduce the notion of “fragile
topology.” We say a set of bands possesses fragile topology if there is
a topological obstruction in deforming it to any trivial (atomic) limit,
but the obstruction is resolved once we allow for the introduction of
additional trivial degrees of freedom. (c) In contrast, bands with sta-
ble topology remain nontrivial upon the stacking of any trivial bands.
(d) Up to an overall sign change of the tight-binding Hamiltonian,
there are generally six distinct splitting patterns for a decomposable
elementary band representation. Three cases are ruled out by defini-
tions, indicated by crosses. Our model Ĥ0 shows that case (v), the
only splitting pattern with trivial valence bands, is possible.

multaneously trivial [19, 27, 28].
In fact, as is discussed in depth in Refs. 19 and 27, the tight-

binding degrees of freedom specified in Ĥ0 correspond to an
EBR, and therefore Ĥ0 serves as a concrete model realization
of the splitting pattern “EBR = trivial⊕ fragilely topological.”
Given the ground state of Ĥ0 is an atomic insulator, we con-
clude that the splitting of an EBR does not generally imply
nontrivial band topology in an insulator.

Discussion—We emphasize that while fragile topology
may be reminiscent of the “Hopf insulator” [46, 47], they are
sharply distinct concepts. Without adding additional symme-
tries, the Hopf insulator is only topological in a half-filled two-
band model [48], and is unstable even against the introduction
of high-energy, unoccupied degrees of freedom. Therefore,
topology of the Hopf insulator variety is not expected to be
relevant to electronic band structures in materials, where such
high energy bands are inevitably present. In contrast, frag-
ile topology remains well-defined in this setting, and are only
trivialized by adding fully filled atomic bands below the Fermi
level. The distinction between adding orbitals above and be-
low the Fermi energy is important because only the latter ne-
cessitates a modification of the many-body wave function.
In addition, unlike the Hopf insulator, the notion of fragile

topology does not rely on the nontriviality of any special map
between spaces, and is ultimately defined via the symmetry
protection of certain patterns of quantum entanglement in the
ground state wave function. It is expected to arise whenever
the spatial symmetries are rich enough, for systems with or
without spin-orbit coupling and/ or time-reversal invariance,
in both two and three dimensions.

Our model also proves that the splitting of an EBR, dis-
cussed in Refs. 19, 27, and 28, does not necessarily imply a
topological band insulator, and for a reliable diagnosis one
must further corroborate analysis using symmetry eigenval-
ues [18, 19, 27, 28, 49–53] or, more generally, wave-function-
based topological invariants. We note that the range of phys-
ical signatures that a fragile topological phase can exhibit is
expected to be restricted by the fact that it can be trivialized
by stacking with an atomic insulator. For instance, fragile
topological phases are not expected to host protected surface
states, for their bulk topology can be trivialized simply by the
addition of atomic insulators without any surface signatures.
This also suggests fragile topology is not expected when only
internal symmetries are present, since one can always find a
surface which preserves all internal symmetries. We leave the
analysis of their physical signatures and general diagnosis to
future works.

In closing, we emphasize that the notion of fragile topol-
ogy will be important in the modeling of electronic systems,
given the central role played by Wannier functions in the
well-established methods. Moreover, fragile topology is not
a mere mathematical possibility, but arises in realistic models
and potentially even in real materials, like small-angle twisted
bilayer graphene [20–23].
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