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Abstract

Despite the rapid progresses in the field of quantum spin Hall (QSH) effect, most of the QSH

systems studied up to now are based on crystalline materials. Here we propose that the QSH effect

can be realized in quasicrystal lattices (QLs). We show that the electronic topology of aperiodic

and amorphous insulators can be characterized by a spin Bott index Bs. The nontrivial QSH state

in a QL is identified by a nonzero spin Bott index Bs = 1, associated with robust edge states and

quantized conductance. We also map out a topological phase diagram in which the QSH state lies

in between a normal insulator and a weak metal phase due to the unique wavefunctions of QLs.

Our findings not only provide a better understanding of electronic properties of quasicrystals but

also extend the search of QSH phase to aperiodic and amorphous materials that are experimentally

feasible.

a Corresponding author: fliu@eng.utah.edu
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Introduction. QSH states, which are characterized by topologically protected metallic

edge states with helical spin polarization residing inside an insulating bulk gap, have at-

tracted much interest in the last decade [1–5]. QSH states have been discovered in various

two-dimensional (2D) materials [6, 7]. Recently, QSH systems grown on conventional semi-

conductor substrates have been theoretically proposed and experimentally realized, [8–12]

which bridges topological states with conventional semiconductor platforms offering an at-

tractive route towards future quantum device applications. However, almost all the existing

QSH states are based on crystals and identified by the Z2 topological invariant that is defined

only for periodic systems [2, 13]. In this Letter, we extend the QSH state to quasicrystalline

systems and define a new topological invariant, the spin Bott index, to identify nontrivial

topology in aperiodic and amorphous systems.

Quasicrystal phases with long-range orientational order but no translational symmetry

have attracted considerable attentions since their first discovery in 1982 [14]. Because of the

unique structural characteristics, quasicrystals exhibit various unusual physical properties,

such as extremely low friction [15], self-similarity [16, 17] and critical (power-law decay)

behaviors of wavefunctions [18, 19] in between extended Bloch states of periodic systems

and exponentially localized states of disorder systems due to Andersion localization. Addi-

tionally, 2D QLs have been epitaxially grown on quasicrystalline substrates recently [20–25].

Here we answer an intriguing question: is it possible to realize a QSH state in a quasicrystal

to support topologically protected extended edge states along the quasicrystal’s boundary,

contrary to the general critical states of quasicrystals? If so, how to define a topological

invariant in analogue of the Z2 index of periodic systems, to identify the QSH state in

quasicrystals and more generally in amorphous systems?

We note that so far only very few works have been done on topological states of aperiodic

systems, in particular, the Chern insulator states analogous of quantum anomalous Hall

(QAH) states [26–28]. However, they are based on either artificial systems, such as optical

waveguide with an artificial gauge field [26] and networks of interacting gyroscopes [27], or

lattice models with artificial hoppings, such as an amorphous lattice model [28]. In contrast,

we propose the realization of the QSH state in real quasicrystal materials with atomic

orbitals, especially the surface-based QLs, which are readily makable by experiments. We

characterize its nontrivial topology using the newly derived spin Bott index. As in crystals,

the QSH phase in quasicrystals manifests also with robust metallic edge states and quantized
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conductance. Moreover, we determine a topological phase diagram for QLs and show that

the QSH state lies in between a normal insulator and a gapless phase exhibiting weak

metallic behavior due to the critical wavefunctions of QLs. Our proposed atomic model of

quasicrystalline QSH states can be possibly grown by deposition of atoms on the surfaces of

quasicrystal substrates.

Model. 2D QLs are constructed according to the Penrose tiling with fivefold rotational

symmetry [29], as shown in Fig. 1(a). Since the QL possesses long-range orientational

order but lacks translational symmetry, we cannot use the Bloch theorem as for the crystal

calculations. However, it is still possible to generate a series of periodic lattices with a

growing number of atoms that approximate the infinite QL according to the quasicrystal

tiling approximants [18, 26, 30, 31]. In our model, the atoms are located on vertices of

rhombuses of the Penrose tiling. The first three nearest neighbors are considered, as shown

in the inset of Fig. 1(a); their separations are r0 : r1 : r2 = 2 cos 2π
5
: 1 : 2 sin π

5
, respectively.

We consider a general atomic-basis model for QLs with three orbitals (s, px, py) per site.

The Hamiltonian is given by

H =
∑

iα

ǫαc
†
iαciα +

∑

<iα,jβ>

tiα,jβc
†
iαcjβ

+ iλ
∑

i

(c†ipyσzcipx − c†ipxσzcipy), (1)

where c†iα = (c†iα↑, c
†
iα↓) are electron creation operators on the α(= s, px, py) orbital at the

i-th site. ǫα is the on-site energy of the α orbital. The second term is the hopping term

where tiα,jβ = tα,β(dij) is the hopping integral which depends on the orbital type (α and β)

and the vector dij between sites i and j. λ is the spin-orbit coupling (SOC) strength and

σz is the Pauli matrix. In our model, the hopping integral follows the Slater-Koster formula

[32]

tα,β(dij) = SK[Vαβ(dij), d̂ij], (2)

where d̂ij is the unit direction vector. The distance dependence of the bonding parameters

Vαβ(dij) is captured approximately by the Harrison relation [33]:

Vαβ(dij) = Vαβ,0
d20
d2ij
, (3)

where d0 is a scaling factor to uniformly tune the bonding strengths. Since only the band

inversion between s and p states of different parities is important for the realization of
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(a) Penrose tiling

(b) Quasicrystal lattice

FIG. 1. (a) Penrose tiling containing 521 vertices. The red dashed line defines a unit cell under

periodic approximation. The inset shows that the atomic orbitals placed on vertices of rhombuses

and the nearest-neighbor hopping between them. (b) Atomic model of QSH state in a surface-based

2D QL. The red and blue arrows represent edge states with opposite spin polarizations.

topological states, we focus mainly on 2/3 filling of electron states hereafter, unless otherwise

specified.

Results. The calculated results of a particular realization of the QSH state in the QL

with open boundary condition (OBC) and periodic BC (PBC) are shown in Fig. 2. It is found

that the PBC system clearly shows an energy gap, as displayed in Fig. 2(a). This indicates

that the system is an insulator. However, there are some eigenvalues within the gap region
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of the energy spectrum in the presence of OBC, implying that the system becomes metallic.

In Fig. 2(b), we plotted the wavefunction distribution of a typical mid-gap state [marked

as a star in Fig. 2(a)]. Interestingly, the mid-gap state is an “edge state” which is localized

on the boundary of the finite QL. We also studied other finite QL samples with different

boundary geometries, and found that the edge state is robust, which always remains on the

boundaries regardless of their detailed shapes [34]. In contrast, typical bulk states show the

well-known localized or critical characters of quasicrystals [34]. Due to the time-reversal

symmetry, the eigenvalues always appear in pairs with the same energy for the mid-gap

edge states; while the wavefunctions of the two “degenerate” states are mainly contributed

from spin up and down components, respectively. This implies that the system should be a

topologically nontrivial QSH insulator.

To verify the conductive feature of the edge states, we further investigated the transport

properties based on the non-equilibrium Green’s function method [35–37]. In the transport

simulation, one finite QL is coupled to two semi-infinite periodic leads and the two-terminal

conductance is calculated as shown in Fig. 2(c). Remarkably, there is a clear quantized

plateau at G = 2e2/h for the two-terminal charge conductance, which resembles that of the

QSH state in graphene [1]. As shown in Fig. 2(d), the local density of state of the central

quasicrystal at E = 0 eV [the blue star marked in Fig. 2(c)] mainly distributes on two edges

of the quasicrystal, indicating that the conductive channels are mostly contributed by the

topological edge states.

The bulk energy gap, robust mid-gap edge states as well as the quantized conductances

connote the nontrivial topology of the QL. However, the most critical quantity to identify

the electronic topology is the topological invariant which classifies insulators into different

topological classes. For example, the Chern number (C) [38–40] distinguishes the QAH

states (C 6= 0) with trivial time-reversal-broken insulators (C = 0); the topological Z2

invariant [2, 13] determines the QSH states (Z2 = 1) with normal time-reversal-invariant

insulators (Z2 = 0). However, these topological invariants are only applicable to periodic

systems. Recently, the Bott index, which is equivalent to the Chern number [41], is proposed

to determine QAH state in nonperiodic system [26, 28, 42–44]. Here we derive a topological

invariant for the QSH state of aperiodic systems.

Spin Bott index. In order to verify the QSH states in the QLs, we define the spin Bott

index for QSH states (For a detailed discussion see [34].) in reference to the definition of
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the spin Chern number [45–47]. We firstly construct the projector operator of the occupied

states,

P =

Nocc∑

i

|ψi〉〈ψi|. (4)

Then we make a smooth decomposition Pz = P+⊕P− for spin-up and spin-down sectors. At

the first sight, this seems an easy job as long as two spin channels are decoupled. However,

it becomes more complicated if there are spin-mixing terms in the Hamiltonian. The key

idea is to use the projected spin operator,

Pz = P ŝzP, (5)

where ŝz = ~

2
σz is the spin operator (σz is the Pauli matrix). For a spin conserving model,

ŝz commutes with the Hamiltonian H and Pz, the Hamiltonian as well as eigenvectors can

be divided into spin-up and spin-down sectors. Therefore, the eigenvalues of Pz consist of

just two nonzero values ±~

2
. For systems without spin conservation (for example, the Kane-

Mele model with a nonzero Rashba term λR [34]), the ŝz and H no longer commute, and

the spectrum of Pz spreads toward zero. However, as long as the spin mixing term is not

too strong (e.g., λR/λSO < 3 in the Kane-Mele model, where λSO is the intrinsic spin-orbit

coupling [34]), the eigenvalues of Pz remain two isolated groups which are separated by zero.

Because the rank of matrix Pz is Nocc, the number of positive eigenvalues equals to the

number of negative eigenvalues, which is Nocc/2. The corresponding eigenvalue problem can

be denoted as

Pz| ± φi〉 = S±| ± φi〉. (6)

In this way we can construct new projector operators

P± =

Nocc/2∑

i

| ± φi〉〈±φi|, (7)

for two spin sectors. Next, we calculate the projected position operators

U± = P±e
i2πXP± + (I − P±), (8)

V± = P±e
i2πY P± + (I − P±), (9)

where X and Y are the rescaled coordinates which are defined in the interval [0, 1). To make

the numerical algorithm more stable, we perform a singular value decomposition (SVD)

M = ZΣW † for U± and V±, where Z and W are unitary and Σ is real and diagonal, and
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set M̃ = ZW † as the new unitary operators. The SVD process does not destroy the original

formalism, but effectively improves the convergence and stability of the numerical algorithm

[34]. The Bott index, which measures the commutativity of the projected position operators

[48–51], are given by

B± =
1

2π
Im{tr[log(Ṽ±Ũ±Ṽ

†
±Ũ

†
±)]}, (10)

for two spin sectors, respectively. Finally, we define the spin Bott index as the half difference

between the Bott indices for the two spin sectors

Bs =
1

2
(B+ −B−). (11)

We checked the above definition for crystalline and disorder systems and found that the spin

Bott index is the same as the Z2 topological invariant [34].

Similar to the spin Chern number [45–47], the spin Bott index is a well-defined topological

invariant. It is applicable to quasiperiodic and amorphous systems, which provides a useful

tool to determine the electronic topology of those systems without translational symmetry.

For the QL in Fig. 2, we found that the spin Bott index Bs = 1, indicating indeed a QSH

state. Due to the bulk-edge correspondence, it is natural to expect the existence of robust

boundary states for systems with nontrivial spin Bott index. Hence, the nontrivial spin Bott

index is consistent with the above calculations of edge states and electronic conductance, all

confirming the nontrivial topological character of the QL.

Topological phase diagram. In order to achieve the QSH state, one prerequisite is the

band inversion between conduction and valance states. Generally, one can realize the band

inversion by tuning either the on-site energy difference ∆ = ǫs − ǫp or the SOC strength λ

[6, 7, 11]. To investigate the necessary condition for the realization of topological states in

QLs, we calculated the topological phase diagram in the ∆-λ plane. As shown in Fig. 3(a),

the normal insulator (NI) and QSH state are divided by an energy gap closing line [white

dashed line in Fig. 3(a)]. To achieve the QSH phase, one has to reduce ∆ so as to realize a

band inversion between s and p states and then increase λ to open a nontrivial energy gap.

Additionally, interactions between different atomic sites also play an important role in

determining the spectrum and localization of electronic states in quasicrystals [16, 52, 53].

We further investigated the phase diagram with the increasing bonding strengths. As shown

in Fig. 3(b), the QL undergoes a topological phase transition from a NI to a QSH insulator
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at a critical value of about dc0 = 0.89. By further increasing the interaction, the system even-

tually enters a gapless phase which turns out to be a weak metal, as discussed later. Such

a process can be understood by considering the evolution of states as following: starting

from the atomic orbital limit, s and p states are initially separated by a trivial charge gap

[Fig. 3(c)]. By increasing the interaction one gradually enlarges the band width, therefore

reduces and eventually closes the charge gap, realizing a s-p band inversion; the SOC effect

then reopens an energy gap with nontrivial topology [Fig. 3(d)]. Further increasing the

interaction, to overcome the SOC gap, will drive the system into a gapless phase [Fig. 3(e)].

Interestingly, in the QSH region a defect mode induced by periodic approximation of qua-

sicrystal moves downwards into the energy gap gradually with the increasing d0, while the

whole gap remains to be topologically nontrivial with Bs = 1. We also calculated phase

diagrams of quasicrystal approximants with different sizes and found similar phase transi-

tions in all approximants.[34] This implies that the topological phase transition as well as

the QSH effect should appear in QLs in the thermodynamic limit of infinite lattice size.

Finally, we studied the localization of wavefunctions in the QL model. Whether the

gapless state in the phase diagram is metallic or insulating depends on the localization of

wavefunction around the Fermi level [16, 53]. For nonperiodic systems, we illustrate the

localization of each state by its participation ratio [52],

γn =
(
∑N

i |〈i|ψn〉|
2)2

N
∑N

i |〈i|ψn〉|4
, (12)

where |i〉 is the i -th local orbital. The participation ratio takes the value 1/N if the wavefunc-

tion is localized in a single orbital and unity if the wavefunction is extended uniformly over

the whole system. The participation ratio of wavefunctions in QLs (Fig. 10 of Ref. [34])

is less than 0.25 which is much smaller than that of extended wavefunctions in periodic

crystals. However, the localization behavior is also different from disordered Anderson lo-

calization, where the state around the mobility gap tend to be more localized [54–56]. This

indicates that critical wavefunctions are induced by local structural topology of the QLs

[57, 58]. The low participation ratio also suggests a weak metallic behavior in the electronic

transport [19, 56, 59, 60]. Our transport simulation gives a conductance about an order of

magnitude smaller than that of pure periodic leads, confirming its weak metallic behavior

[34].
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Experimental feasibility. Our proposed atomic model of quasicrystalline QSH states is

expected to be realized in surface-based 2D QLs. With the development of growth tech-

nique with atomic precision, 2D quasicrystals have been epitaxially grown on quasicrystalline

substrates in the last two decades [20–25]. For example, single-element epitaxial quasicrys-

talline structures have been successfully grown by deposition of Si [61], Pb [62–67], Sn [68],

Sb [69], Bi [70], Co [71], and Cu atoms [72–74] on the fivefold (tenfold) surfaces of icosa-

hedral (decagonal) quasicrystals which serve as template substrates. Moreover, aperiodic

quasicrystalline phases can also be realized on crystalline surfaces [75]. For example, atomi-

cally flat epitaxial Ag films with quasiperiodicity was synthesized on GaAs(110) surface [76].

Recently, Collins et al. [77] realized a synthetic QL by arranging carbon monoxide molecules

on the surface of Cu(111) to form a Penrose tiling using scanning tunneling microscopy and

atomic manipulation. We, therefore, expect that it is experimentally feasible to realize our

theoretically proposed atomic model of QSH states on surface-based QLs.

Conclusion We have proposed the realization of QSH states in Penrose-type QLs. We

characterize the topological nature by deriving a newly-defined topological invariant, the

spin Bott index, in addition to conventional evidences including robust edge states and

quantized conductances. Beyond the Penrose tiling, other QLs of different classes of local

isomorphism should also be able to realize the QSH state [78]. The essential band inversion is

not limited to the s and p orbitals, and other types of band inversion mechanism [79] such as

p-p [80], p-d [81], d -d [82], and d -f band inversion [83], are all feasible to achieve QSH states

in quasicrystals. Our finding therefore extends the territory of topological materials beyond

crystalline solids, to surface-based aperiodic systems with a range of choices of structural and

element species. Our proposed approach is also applicable to other 2D QLs with different

symmetries and to 3D quasicrystal structures [84, 85], which may open additional exciting

possibilities.

This work was supported by DOE-BES (Grant No. DE-FG02-04ER46148). The calcula-

tions were done on the CHPC at the University of Utah and DOE-NERSC.
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FIG. 2. Calculation of a quasicrystal sample with 1364 atoms (3 orbitals and 2 spins on each atom).

The parameters used here are ǫs = 1.8, ǫp = −6.5, λ = 0.8, Vssσ = −0.4, Vspσ = 0.9, Vppσ = 1.8 and

Vppπ = 0.05 eV. (a) Energy eigenvalues En versus the state index n. The system with periodic

boundary condition (PBC) shows a gap, while that with open boundary condition (OBC) shows

mid-gap states. (b) The wavefunction |ψ(r)〉 = ρ(r)eiφ(r) of the mid-gap state [marked as the yellow

star in (a)] is localized on the edge of the system. The size and the color of the blob indicates the

norm |ρ(r)|2 and phase φ(r) of the wavefunction, respectively. (c) Two-terminal conductance G as

a function of the Fermi energy E showing a quantized plateau in the energy gap. (d) Local density

of state Dn(E) at E = 0 eV for the central quasicrystal in the transport simulation. The size of

blue dot represents the relative value of local density of state.
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FIG. 3. (a) Topological phase diagram the in the parameter space of energy difference ∆ = ǫs− ǫp

and SOC strength λ. (b) Energy gap Eg and spin Bott index Bs as a function of interaction

strength scale d0 calculated in a quasicrystal approximant containing 3571 atoms. A topological

phase transition among normal insulator (NI), QSH insulator and weak metal (WM) is clearly

visible. The dark blue line in the QSH region represents the defect mode in the energy gap. (c,d,e)

Orbital-resolved spectrum of QL in (c) NI, (d) QSH insulator and (e) WM states, respectively. A

s-p band inversion occurs in the QSH state. The color of dots represents the relative weight of p

or s orbitals.
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