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Nonlocal heat flux was measured in laser-produced coronal plasmas using a novel Thomson scattering tech-
nique. The measured heat flux was smaller than the classical values inferred from the measured plasma condi-
tions in regions with large temperature gradients and agreed with classical values for weak gradients. Vlasov—
Fokker—Planck simulations self consistently calculated the electron distribution functions used to reproduce the
measured Thomson scattering spectra and to determine the heat flux. Multigroup nonlocal simulations overes-

timated the measured heat flux.

PACS numbers:

In diverse fields of plasma physics including astrophysics,
inertial confinement fusion, and magnetohydrodynamics,
classical thermal transport [1, 2] provides the foundation for
calculating heat flux [3-7]. The classical theories of ther-
mal transport by Spitzer—Héarm (SH) [1] and Braginskii [2]
specify the heat flux by a local expression, in terms of the
thermal conductivity K and the electron temperature gradient
(e.g., qgy = —«VT,). This theory breaks down in the pres-
ence of large temperature gradients [8—11], turbulence [12],
or return current instabilities [13—16]: classical theory does
not include nonlocal effects where energetic electrons travel
distances comparable with the temperature scale length before
colliding.

Local thermal transport theories [1, 2] follow from a per-
turbative solution of a kinetic equation in terms of the colli-
sion parameter A,;/Lt < 1, where A,; is the electron—ion (e~
i) mean free path and Ly = |[VIn(7,)| ! is the scale length of
the temperature gradient. Nonlocal theories overcome lim-
itations of classical theory by accounting for the range of
electron—ion mean free paths associated with different elec-
tron velocities. By extending closure relations for hydrody-
namic models into the kinetic regime of weak collisions, these
theories [17-24] have established the limits of classical trans-
port (A; /Ly ~ 1072).

In laser-produced plasmas, classical theory predicts un-
physically large thermal transport and hydrodynamic simula-
tions of these plasmas require an ad hoc limiter on the heat
flux to match experimental observables. Historically these
limiters were set by kinetic simulations [17, 25-27], inte-
grated experiments [10, 11, 28, 29], or more-focused Thom-
son scattering measurements of the local plasma conditions
(i.e., electron temperature and density) [8, 13, 30, 31]. More
recently, the nonlocal Schurtz, Nicolai, and Busquet (SNB)
model [23] was introduced as a computationally efficient
method for calculating the nonlocal heat flux in large-scale
multidimensional hydrodynamic simulations. Experiments
that attempt to measure nonlocal transport have, however,
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FIG. 1: (a) Calculated Thomson-scattering features (red, right axis)
from electron plasma waves (Eq. 1) are shown (vy = @/k) using a
Maxwellian (solid blue, left axis) electron distribution function and
the non-Maxwellian (dashed blue) distribution that accounts for clas-
sical SH heat flux (Ao;/L7 = 2.2 x 1073, q/qrs = 3%). (inset) For
a fixed normalized phase velocity, the ratio (R) of the peak scat-
tered power of the up- and downshifted features are shown for cal-
culations that use classical SH (dashed curve, top axis) and nonlo-
cal (solid curve, bottom axis) distribution functions over a range of
heat flux normalized to the free-streaming flux, grs = 1T, vse. (b) A
schematic of the setup is shown.

been limited to indirect observations [8, 24, 30-32].

In this Letter, we present the first direct measurement of
nonlocal heat flux. A novel implementation of collective
Thomson scattering measured heat flux by probing the relative
spectral amplitudes of electron plasma waves [Fig. 1(a)]. In
addition to the heat flux, the plasma-wave spectrum provided
a measurement of the plasma temperature and density pro-
files. The profiles were used to calculate the classical SH heat
flux, which was in good agreement with the measured heat
flux far from the target where the temperature scale length was
longer than the electron—ion mean free path of heat-carrying
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FIG. 2: The measured collective Thomson-scattering spectra (top row) and the corresponding spectral profiles (blue dots) at 1.5 ns (bottom
row). The data were fit (red) with Eq. 1 using non-Maxwellian electron distribution functions to measure heat flux. (Insets) The red-shifted
features are shown with calculations (black) that used the plasma conditions from the fit but a Maxwellian electron distribution function. These
spectra recover the location of the scattering features but fail to match their amplitudes. At 1.5 mm, the spectrum was fit (dashed curve) with
calculations that use a distribution function consistent with classical SH theory. All spectra are normalized to the peak scattered power.

electrons (A.; /L7 ~ 7 x 1073). For steeper gradients, the mea-
sured heat flux was up to a factor of 2 smaller than the classical
values as a result of nonlocal transport. For the most nonlo-
cal conditions, the SNB model predicted an inhibited heat flux
compared with the classical values, but still overestimated the
measured heat flux by ~40%. In the region where classical
SH theory agrees with the measured heat flux, the SNB model
overestimates the flux.

Figure 1 illustrates the effect of heat flux on the col-
lective Thomson scattering spectrum. Two scattering spec-
tra, calculated with and without SH heat flux, demon-
strate the sensitivity of the Thomson scattering spec-
trum to the shape of the electron distribution func-
tion. The SH distribution function was derived from the
lowest-order terms in the perturbative solution of the ki-
netic equation, fsy(v) = f3(v) + cos8f(v), where f(v) =
Nei/Lr /2] (V) vie)* (4 —V2/2v2) fY(V), Vie = \/T. /m, is
the electron thermal velocity, f(f)"[ is a Maxwellian velocity dis-
tribution function, and 0 is the angle between electron velocity
and the temperature gradient. The Thomson scattering spec-
tra were calculated in the high-frequency limit where the ion
dynamics can be ignored [33]:

_2n fu(o/k)

SO = Tetco) P

e))

where €(k,®) is the longitudinal plasma dielectric function
and the probed wave vector (frequency) is the difference be-
tween the incident and scattered wave vectors (frequencies),
k = k; — ky(® = ®; — ;). The one-dimensional distribu-
tion function fe(v) is determined by integrating the full dis-
tribution function over velocities perpendicular to the probed

wave vector. At the Langmuir wave resonance defined by
e(k,0) =0, w(k) = +or (k) + iy, (k), where in general the
Landau damping rate Y, is proportional to df,/dv lv—wr /k
and o is approximately the resonant frequency for Lang-
muir fluctuations. The collisionless approximation of S(k, ®)
in Eq. (1) is valid for these experiments as the scale of the
probed waves (~ 1/k) is small compared to the electron—ion
mean free path such that kA,; > 1.

Figure 1(inset) shows the sensitivity of the amplitude ra-
tio of the up- and downshifted (red- and blue-shifted, respec-
tively) scattered peaks to heat flux, where SH or nonlocal dis-
tribution functions were used to calculate the Thomson scat-
tering spectrum. It is evident from Eq. (1) that heat flux has
two effects on the scattered power near the resonance: (1)
the amplitude depends on the number of electrons at the reso-
nance [ f, (g /k)] and (2) the width is given by the slope of the
electron distribution function at the resonance 9,/ |, _ ok
Therefore, to maximize the effect of heat flux on the scattered
power, the scattering geometry was chosen to probe Langmuir
waves propagating along the target normal where the temper-
ature gradient is the largest, k || —V7,, and with phase ve-
locities near the region of the electron distribution function
with the most heat-carrying electrons, wy,/k 2 3.4v,,. For this
geometry, it was demonstrated in theory [35] that the Lang-
muir fluctuations that contribute to the red-shifted peak in the
Thomson scattering spectrum experience increased Landau
damping, while the oppositely propagating Langmuir waves
that contribute to blue-shifted peak become less damped.

The experiment was conducted at the Omega Laser Facil-
ity [36] at the University of Rochester’s Laboratory for Laser
Energetics and used six Aszp = 351-nm beams to produce a
blow off plasma from a planar aluminum target. Each beam
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FIG. 3: The heat flux (red) measured along the target normal is com-
pared with (blue) classical heat flux (SH) calculations and (black)
heat flux values obtained from the simulations using the SNB model.
Both the simulations and calculations were initiated with the mea-
sured electron temperatures and densities. For reference, Ao; /LT =
14%x1072,14%x1072,1.3x1072,1.0x 1072,7 x 1073 at 1.1 mm,
1.2 mm, 1.3 mm, 1.4 mm, 1.5 mm, respectively.

had 250 J in a 2-ns flat top pulse. Phase plates [37] were used
to set the profile of the laser spot at the target plane to be a
high-order super-Gaussian (n = 4.6) with a full width at half
maximum of 560 ym. The six beams with the smallest angle
of incidence (8°, 29°, 32°, 33°, 35°, and 40°) were chosen to
produce the plasma [Fig. 1(b)]. The Thomson-scattering di-
agnostic [38] consisted of a 40-J, 2-ns-long, Ay, = 526.5-nm
probe beam with a best-focus diameter of ~ 50 um [39]. The
light scattered from a 50 —um x 50 —ym x 50 — ym volume
was imaged through a 1/3-m spectrometer onto a streak cam-
era. The spectral dispersion was 0.411 nm/pxl £ 0.4%. The
system had spectral and temporal resolutions of 0.5 nm + 5%
and 20 ps =+ 0.5%, respectively. The scattering angle was 60°.
The scattering volume was set to five different locations along
the target normal ranging from 1.1 mm to 1.5 mm from the
initial target surface. To account for the bremsstrahlung ra-
diation collected by the Thomson-scattering system, a back-
ground was established at each location by turning off the
Thomson scattering probe beam and was subtracted from the
corresponding spectrum.

Figure 2 shows the collective Thomson-scattering spec-
tra measured at each of the probed locations. The data
were fit with a fully kinetic Thomson-scattered power spec-
trum [33] that includes relativistic effects [34] and incorpo-
rates a non-Maxwellian electron distribution function to pro-
vide a measure of the heat flux, electron temperature, and den-
sity [35]. To a good approximation, the relative amplitudes of
the electron-plasma wave features are given by heat flux, the
frequency of the electron plasma-wave feature by the density,
and the width of the plasma wave feature by the electron tem-
perature.

The insets in Fig. 2 compare scattered spectra calculated
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FIG. 4: Electron temperature (blue dots, left axis) and density (red
squares, right axis) measurements at t = 1.5 ns. Profiles of electron
temperature (dashed blue curve) and density (solid red curve) used
in Fokker—Planck simulations. The relative (16 statistical) error bars
are shown with the temperature measurements. The absolute error
bars are represented in the inset.

using non-Maxwellian electron distribution functions, consis-
tent with thermal transport, with Maxwellian electron distri-
bution functions. The excellent quality of the fits over the
complete spectrum indicate the high accuracy of the shape
of the distribution functions used. The significant deviation
from the measured spectra that occurs when not accounting
for the effects of heat flux (i.e., Maxwellian distribution func-
tions) shows the sensitivity of the measurement. The non-
Maxwellian distribution functions were determined from a
Fokker—Planck simulation [40] where the electron tempera-
ture and density profiles were constructed to equal the mea-
sured values. Discrepancies between the shape of the mea-
sured and calculated spectra at the locations closest to the tar-
get suggest that the simulations do not accurately reproduce
the electron distribution function far from the resonance and
suggest that more work is needed.

Figure 3 shows the resulting heat flux measurements at the
five probed locations obtained by integrating the electron dis-
tribution functions used to fit the Thomson scattering spec-
trum [qrs = [ $mv>vf.(v)d*v]. The measured heat flux is
compared to classical heat flux values (qsy = —xVT,) deter-
mined by calculating the Spitzer thermal conductivity and the
local temperature gradient from the measured plasma profiles
(Fig. 4). Excellent agreement between the classical and mea-
sured heat flux is observed for the location farthest from the
target surface, but for locations closer to the target surface, the
measured flux is smaller than the classical values. This differ-
ence highlights the nonlocal nature of the thermal transport.

Figure 4 presents the measured electron temperature and
density profiles determined from fitting the blue-shifted
features with the Thomson-scattering power spectrum, as-
suming Maxwellian electron distribution functions (Fig. 2).



The electron temperature decreased from 1.27+0.04 keV to
1.12+0.04 keV over 400 um. The electron temperature gra-
dient at each measurement location was determined by fit-
ting a fifth-order polynomial to the measurements. The un-
certainty in the temperature gradient was calculated by vary-
ing the data within the relative error bars, which were used
to calculate the errors in the classical heat flux (Fig. 3).
Over this same distance, the electron density dropped from
8.36£0.04 x 10" cm™3 t0 2.63 +£0.01 x 10" cm™3. The
high signal-to-noise ratio in the measured spectra resulted in
excellent x2 statistical fits, which determined the 10 statisti-
cal relative error bars shown in Fig. 4. The absolute errors in
the electron temperature and density were dominated by un-
certainties in the spectral dispersion and resolution. Adding
these errors in quadrature resulted in a 2% and 3% absolute
error in the density and temperature, respectively.

For the measurement farthest from the target surface
(1.5 mm), the Thomson scattering spectrum calculated us-
ing the electron distribution function determined by classical
SH theory, where A,;/Ly =7 x 1073, was in good agreement
(Fig. 2). This is consistent with the agreement in the mea-
sured heat flux at this location presented in Fig. 3. Although
the classical SH distribution function allows the amplitudes
of the spectral peaks to be reproduced, the fit shows a discrep-
ancy in the width of the red-shifted peak suggesting that the
shape of the SH electron distribution function moving away
from the resonance is incorrect. For locations closer to the
target, the electron distribution function predicted by classical
theory becomes negative at velocities around the Langmuir
wave resonances, and classical theory cannot be used to fit the
measured spectrum. This is consistent with the measured heat
flux being significantly less than the classical values (Fig. 3).
At these locations A.; /Ly > 103, which confirms experimen-
tally the limit of validity previously determined by nonlocal
theories [17-22].

To determine the electron distribution functions consis-
tent with nonlocal transport, the K2 Vlasov—Fokker—Planck
code [40] was used. K2 uses a Legendre polynomial rep-
resentation of the electron distribution function, f(¢,x,v) =
Y, fu(t,x,v)P,(8) where x is the direction along the target
normal. K2 solves for the self-consistent electric field and
includes the effects of electron—ion scattering and electron-
electron collisions. To capture the fine detail in the distribu-
tion functions at high velocities, close to the Langmuir wave
resonances, polynomials up to and including f3 were required.

In all calculations, the plasma profiles were initially set to
the measurements (Fig. 4). The temperature of the region
between the target at 500 ym was constant and was varied
from 1.2 keV and 2 keV in different runs. Since the trans-
port is nonlocal, the choice of boundary condition is impor-
tant to determine heat flow at the edge of the measurement
region (i.e., 1.1 mm) but has a small effect at the other mea-
surement positions. Once the initial conditions were set, the
K2 code evolved the distribution function in time and, after
a few collision times, reached steady state. Over this time,
a small amount of heating/cooling was applied to the elec-
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FIG. 5: The velocity-dependent contribution of heat flux is shown
at 1200 um for calculations using the Fokker—Planck (dashed red),
classical (solid blue), and SNB (dotted black) models. (inset) The
corresponding electron distribution functions are shown.

trons to help maintain the temperature profile close to the mea-
sured (i.e., initial) values. This approximately accounted for
the small amount of ongoing thermal compression/expansion
in the coronal region. As the hydrodynamic motion is slow
compared to the electron thermal transport, it was ignored.
For each boundary condition, the electron distribution func-
tions at each measurement position were used in Eq. 1 to cal-
culate Thomson scattering spectra. The boundary condition
(1.8 keV) that generated the Thomson scattering spectra with
the best match across all locations was used to determine the
measured heat flux. A given distribution function produces
a unique scattering spectrum, but in practice signal-to-noise
and dynamic range limit measurements to regions around the
resonances.

The measured heat flux was compared to calculations that
used the multigroup nonlocal SNB model (Fig. 3), initialized
with the measured electron temperature and density profiles
(Fig. 4). In the nonlocal region, where classical SH theory
overestimates the flux, the SNB model calculates a flux that
is about halfway between the classical and measured values.
In the region where classical transport is valid (1.5 mm), the
SNB model overestimates the flux. Furthermore, in the nonlo-
cal transport regions, the electron distribution functions were
negative around the electron-plasma wave resonance, which
made it impossible to fit the measured Thomson scattering
spectrum.

Figure 5 shows the flux contribution of electrons for each
of the models at 1.2 mm from the target surface. According to
the K2 model, the reduction in heat flux relative to the classi-
cal model at this location occurs due to a reduction in the flux
of electrons with v 2 3.4 v;,. Furthermore, the peak heat flow
occurs at a lower velocity (vk> = 3.5 v;,) relative to the clas-
sical result (vsy ~ 3.7 v.). The SNB model slightly inhibits
the flux but still overpredicts the heat flow. The heat flux at
this location is ~60% of the classical value.



In summary, Thomson scattering was used to measure the
heat flux directly from the amplitudes of the Langmuir fluctua-
tions and indirectly through the electron temperature and den-
sity profiles (gsg = —xVT,). The measured heat flux agreed
with classical SH values when A,;/Ly < 1073, but in the oppo-
site limit (A,; > 1073), the differences were as large as a factor
of two. The multigroup nonlocal SNB model over predicted
the flux in all regions which demonstrates the need to include
physics often missing from computationally expedient nonlo-
cal models, most notably high-order polynomials for properly
resolving velocity-space, the self-consistent electric field, and
a Fokker—Plank collision operator.
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