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We show that a nonlinear optical response associated with a resonant, atomically thin material can
be dramatically enhanced by placing it in front of a partially reflecting mirror, rendering otherwise
weakly nonlinear systems suitable for experiments and applications involving quantum nonlinear
optics. Our approach exploits the nonlinear response of long-lived polariton resonances that arise
at particular distances between the material and the mirror. The scheme is entirely based on free-
space optics, eliminating the need for cavities or complex nanophotonic structures. We analyze a
specific implementation based on exciton-polariton resonances in two-dimensional semiconductors
and discuss the role of imperfections and loss.

The realization of strong nonlinear interactions be-
tween individual light quanta (photons) has been a long-
standing goal in optical science and engineering that is
both of fundamental and technological significance [1].
While in conventional optical materials the nonlinear-
ity at light powers corresponding to single photons is
negligibly weak, remarkable advances have been recently
made towards realizing this goal. One promising ap-
proach to quantum nonlinear optics is based on quantum
emitters confined to cavities or nanophotonic structures
that greatly enhance light–matter interactions. Proof-
of-principle experiments have been carried out with neu-
tral atoms [2–4], quantum dots [5], quantum wells [6, 7],
and color centers in diamond [8, 9]. At the same
time, experiments with cold gases [10], ensembles of
solid state quantum emitters [11], and excitons in transi-
tion metal dichalcogenides (TMDs) [12, 13] have demon-
strated strong light–matter coupling without the need for
nanophotonic structures. This is achieved via spatially
delocalized optical excitation, which, however, reduces
the nonlinearity, thereby rendering the system effectively
linear at the level of individual photons. A number of
solutions to this challenge have been proposed, for ex-
ample, exploiting Rydberg blockade to induce strong,
nonlocal interactions between ultracold atoms that re-
sult in strong photon–photon interactions [14]. This ap-
proach has been applied to realize photon blockade [15–
17], two- and three-photon bound states [18] and sym-
metry protected collisions between strongly interacting
photons [19]. Extending such techniques to the domain
of integrated solid-state systems is an outstanding chal-
lenge.

This Letter describes a novel approach to quantum
nonlinear optics, which makes use of resonant, atomi-
cally thin materials. One example of such a material is
a two-dimensional semiconductor such as a TMD mono-
layer, which supports tightly bound, optically active ex-
citons [20]. In free space, excitons with zero in-plane
momentum decay with a radiative rate γ, emitting a
plane wave to either side of the TMD. Interactions be-
tween excitons render the system nonlinear, giving rise
to a shift of the two-exciton state relative to the nonin-
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FIG. 1. (a) An atomically thin (2D) emitter is positioned at
a distance d in front of a partially reflecting mirror with re-
flection and transmission coefficients r0 and t0, respectively.
The free-space radiative decay rate is given by γ, while γ′ de-
notes the loss rate. The setup is formally equivalent to (b),
where the two-dimensional emitter is replaced by an atom
and a one-dimensional waveguide takes the role of the free-
space plane-wave mode. (c) Transmission spectrum in the
limit γ � νFSR for γ′ = 0 and T0 = 0.1 at various dis-
tances d. (d) Maximum transmission as a function of d. The
dashed lines indicate the distances for which the full spec-
tra are shown in (c). The maximum transmission is periodic
in d with period λ0/2. (e) Transmission at the Fabry–Pérot
resonance (d = dFP, δ = δFP) as a function of the loss rate.
Transmission is high provided γ′ � γFP = T0γ.

teracting case. However, in practice this nonlinearity is
very weak, requiring a large number of excitons to cre-
ate a resolvable shift. To enhance the nonlinear optical
response, in our approach, the TMD is placed in front
of a partially reflecting broadband mirror as shown in
Fig. 1a. When the separation between the TMD and the
mirror is close to a half-integer multiple of the exciton
resonance wavelength, the light emitted by the TMD to-
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wards the left (Fig. 1a) and the light reflected by the
mirror destructively interfere, which leads to significant
suppression of the radiative linewidth, enhancement of
the exciton lifetime and an associated enhancement of
the optical nonlinearity. This effect can be understood
in terms of the formation of long-lived exciton-polaritons,
with a substantial excitonic component, which become
very sensitive to nonlinear frequency shifts arising from
exciton–exciton interactions.

Before proceeding, we note an important connection
with the single-atom system shown in Fig. 1b. Both
systems can be thought of as a single-channel scattering
problem with emission rate γ into the channel of interest
and loss rate γ′. In the case of a single atom, γ′ is typ-
ically dominated by emission into free-space modes. By
contrast, conservation of in-plane momentum prevents
scattering into undesired channels for a TMD, and loss
only emerges due to nonradiative decay and material im-
perfections such as disorder. The relevant condition of
low loss, γ′ � γ, has already been demonstrated in high
quality samples [12, 13]. Similar considerations apply to
other two-dimensional systems such as ordered arrays of
trapped atoms with subwavelength spacing [21, 22].

The key idea of this work can be understood by con-
sidering the linear response of a TMD in free space. The
amplitude reflection coefficient close to an excitonic res-
onance is given by the complex Lorentzian rTMD(δ) =
−i(γ/2)/[δ + i(γ + γ′)/2], where δ denotes the detuning
from resonance [23]. Strikingly, the TMD acts as a per-
fect reflector at zero detuning in the absence of losses
despite being much less than a wavelength thick. The
vanishing transmission is the result of resonant scatter-
ing into a single channel, where the incident field destruc-
tively interferes with the scattered field. The effect has
been discussed in a variety of other contexts including a
single atom coupled to a one-dimensional waveguide [24],
classical plasmonic resonators [25], and ordered arrays of
atoms [21, 22].

A nearby mirror significantly modifies the optical re-
sponse. The intensity transmission coefficient T can be
computed by summing over all multiple reflections be-
tween the TMD and the mirror [26]. As shown in Fig. 1c
and d, the transmission spectrum strongly depends on
the distance d. In particular, perfect transmission is
only attainable at distances close to half-integer multi-
ples of the exciton transition wavelength λ0. This dis-
tinction from a conventional Fabry–Pérot resonator orig-
inates from the frequency dependence of the TMD. Per-
fect transmission through a Fabry–Pérot resonator oc-
curs when two conditions are met: The round trip phase
is an integer multiple of 2π and the reflection coefficients
of the two mirrors are equal. Applied to our system,
the latter condition may be stated as |rTMD(δ)|2 = |r0|2,
which sets the detuning at which the Fabry–Pérot reso-
nance occurs, δFP = ±(γ/2)

√
T0/R0. The former condi-

tion then determines the allowed distances dFP according

to the relation r0e
2ikFPdFP = −R0 ± i

√
R0T0, where kFP

is the wavenumber corresponding to the resonance fre-
quency. Here, r0 (assumed to be real and negative) and
t0 denote the amplitude reflection and transmission co-
efficient of the mirror, while R0 = |r0|2 and T0 = |t0|2
refer to the respective intensity coefficients. We may es-
timate the width γFP of the high-transmission resonance
by considering the phase accumulated by a photon during
N ≈ 1/T0 round trips before it is transmitted through
the mirror. If the photon is detuned by ∆ from the res-
onance, it accumulates an additional propagation phase
ϕprop(∆) = 2Nd∆/c, where c is the speed of light. Fur-
thermore, the reflection phase imparted by the TMD is
modified by ϕTMD(∆) ≈ 2N∆/γ. The width of the res-
onance follows from ϕprop(γFP) + ϕTMD(γFP) ≈ 1. In
the limit ϕprop � ϕTMD, the phase from the TMD can
be neglected and the system resembles a conventional
Fabry–Pérot resonator. We are interested in the op-
posite limit, ϕprop � ϕTMD, requiring that γ be much
smaller than the free spectral range νFSR = c/(2d), which
yields γFP ≈ T0γ. For a highly reflecting mirror, γFP is
much smaller than the free-space linewidth γ. The nar-
row linewidth can be physically understood in terms of
a long-lived polariton formed by an exciton and a pho-
ton localized between the TMD and the mirror. Sponta-
neous emission from the polariton is suppressed because
the photonic component destructively interferes with the
field emitted by the exciton [27].

Since the polaritons are predominantly composed of
excitonic degrees of freedom, the interaction between
them is comparable to the interaction between excitons in
the absence of a mirror. Yet, polaritons may interact over
a much longer duration owing to their extended lifetime.
If we denote the interaction energy between two excitons
by χ, we expect that a strong quantum nonlinearity can
be observed if χ > T0γ, corresponding to an effective
enhancement of the nonlinearity by a factor 1/T0 com-
pared to free space. The quantum nonlinearity results
in photon antibunching as the presence of a single po-
lariton blocks transmission by shifting the Fabry–Pérot
resonance by more than its width. In what follows, we
confirm this simplified analysis and show that the effect
is robust to loss, provided the loss rate γ′ is smaller than
γFP, as required to maintain near unity transmission (see
Fig. 1e).

While the above classical approach accounts for the
linear response of the system, it is necessary to quantize
both excitonic and electromagnetic degrees of freedom to
capture quantum nonlinear effects. The spatial mode of
the excitons that couples to the light field is described
by the bosonic annihilation and creation operators a and
a†. The internal dynamics of the excitons are governed
by the Hamiltonian H0 = ω0a

†a + (χ1/2)a†a†aa, where
ω0 is the resonant frequency of the excitons and χ1 is the
dispersive nonlinearity due to exciton—exciton interac-
tions. A level diagram of the the three lowest energy
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states is shown in Fig. 2a. The equation of motion for
a system operator Q can be expressed in terms of the
Heisenberg–Langevin equation [26, 28]

Q̇ = −i
[
Q,H0 +

γ

2
Im
(
r0e

2ik0d
)
a†a+ Ωa† + Ω∗a

]
+D[Q] + F [Q], (1)

where k0 = ω0/c and

Ω =

√
γ

2

(
1 + r0e

2ik0d
)
〈bin,R〉+

√
γ

2
t0e

ik0d〈bin,L〉 (2)

is the Rabi frequency. It is composed of a superposition
of the input fields bin,R and bin,L, illustrated in Fig. 1a,
which evolve as freely propagating photonic modes (as
if the TMD and mirror were absent). The dissipative
dynamics are described by

D[Q] =
[
γ + γ Re

(
r0e

2ik0d
)

+ γ′
](

a†Qa− 1

2

{
Q, a†a

})
+
χ2

2

(
a†a†Qaa− 1

2

{
Q, a†a†aa

})
. (3)

In addition to the radiative decay rate γ and the loss
rate γ′, we include a nonlinear decay rate χ2. This rate
accounts for the dissipative nonlinearity that may arise
from nonradiative decay involving a pair of excitons, or
from excitons scattering off each other into a spatial mode
outside the mode of interest. Excitons may further be
subject to pure dephasing, though the effect has been
excluded here for the sake of clarity. We show in the sup-
plemental material that a pure dephasing rate γd affects
the system in a qualitatively and quantitatively similar
fashion to the loss rate γ′ [26]. Finally, the term F [Q] in
Eq. (1) is a Langevin noise operator [26].

Equation (1) is valid under three assumptions: (i)
The Markov approximation applies, γ � ω0, which
is typically justified for optical transitions and indeed
holds for excitons in TMDs. (ii) The photons initially
occupy a coherent state that is uncorrelated with the
excitons. (iii) Retardation can be neglected during
a round trip of a photon traveling between the TMD
and the mirror. We show in the supplemental mate-
rial that this gives rise to the conditions γ � νFSR,
γ � νFSR

[
1 + Re

(
r0e

2ik0d
)]
/ Im

(
r0e

2ik0d
)
, and χ1,2 �

νFSR
[
1 + Re

(
r0e

2ik0d
)]

, the first one being equivalent
to the earlier condition that the Fabry–Pérot resonance
be dominated by the linewidth of the TMD. All three
inequalities are easily met for d on the order of an
optical wavelength [26]. When these conditions are
satisfied, the mirror affects the exciton dynamics in a
rather simple way. It shifts the resonance frequency by
(γ/2) Im

(
r0e

2ik0d
)

and modifies the radiative decay rate

to γ̃ = γ
[
1 + Re

(
r0e

2ik0d
)]

.

We can obtain the scattered field from the input–

output relations [26, 28]

bout,L = t0e
ik0dbin,L + r0e

2ik0dbin,R +

√
γ

2

(
1+r0e

2ik0d
)
a,

bout,R = t0e
ik0dbin,R −

t0
t∗0
r∗0bin,L +

√
γ

2
t0e

ik0da. (4)

These expressions have the simple interpretation that
the output field arises from a superposition of the in-
put fields with the field emitted by the TMD. Sup-
posing that light is incident from the left, the reflec-
tion and transmission coefficients can be computed ac-
cording to R = 〈b†out,Lbout,L〉/〈b

†
in,Rbin,R〉 and T =

〈b†out,Rbout,R〉/〈b
†
in,Rbin,R〉. For a weak input field, the co-

efficients computed in this manner agree with the clas-
sical result under the same conditions for which the
Heisenberg–Langevin equation holds. We investigate the
quantum nonlinear response by considering the two-time
correlation function of the transmitted field,

g
(2)
T (τ) =

〈b†out,R(0)b†out,R(τ)bout,R(τ)bout,R(0)〉
〈b†out,R(0)bout,R(0)〉〈b†out,R(τ)bout,R(τ)〉

. (5)

Such correlation functions can be computed by express-
ing them in terms of two-time correlation functions of
the excitonic operators, which can be related to one-time
expectation values using the quantum regression theo-
rem [26, 29].

For the remainder of the discussion, we focus on the
sharp Fabry–Pérot resonance, d = dFP. It is possible
to neglect the difference between kFP and k0 under the
same conditions that allowed us to ignore retardation.
Hence, the resonance condition reads r0e

2ik0dFP = −R0±
i
√
R0T0 and the radiative decay rate of the exciton-

polariton is given by γ̃ = T0γ = γFP, consistent with the
width of the transmission peak. To quantify the effect of

line narrowing on the nonlinear dynamics, we plot g
(2)
T (τ)

for different values of the dispersive nonlinearity χ1 in
Fig. 2b, assuming that a weak, monochromatic, coherent
state resonant with the transmission peak (δ = δFP) is in-

cident on the TMD. The figure clearly shows that g
(2)
T (0)

drops below unity for χ1 > γFP, indicating a nonclassical
state of light with strong photon antibunching [29]. The
effect may be understood by observing that the trans-
mission peak of the single and two-exciton transitions
are shifted relative to each other by χ1. If this shift ex-
ceeds the peak width γFP, the second photon is reflected
with high probability. The mechanism is closely related
to polariton blockade in quantum well cavities, where the
presence of a single polariton blocks subsequent photons
from entering the cavity [30]. In the limit χ1 → ∞, the
transmission probability of the second photon is given by
T0, which explains the small but nonvanishing value of

g
(2)
T (0). By setting χ1 = δFP, it is possible to achieve

g
(2)
T (0) = 0 because the transmission peak of the single
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FIG. 2. (a) Three lowest energy levels of the anharmonic os-
cillator used to model quantum nonlinear effects. Dispersive
and dissipative nonlinearities are denoted by χ1 and χ2, re-

spectively. (b) Second-order correlation function g
(2)
T (τ) of

the transmitted light at the Fabry–Pérot resonance (d = dFP,
δ = δFP) for different values of χ1 while χ2 = γ′ = 0. Pro-
nounced photon antibunching is observed when χ1 > γFP.

(c) Dependence of g
(2)
T (0) on the strength of the nonlinearity.

Only χ1 (blue) or χ2 (red) is varied, while the other parame-

ter is set to zero. (d) g
(2)
T (0) as a function of γ′ and T0. The

experimentally relevant regime to observe strong antibunch-
ing is located below the horizontal dashed line (χ1 > γFP)
and above the red line (γFP > γ′).

exciton transition then perfectly matches a zero in trans-
mission of the two-exciton transition (cf. Fig. 1c at zero
detuning).

A dissipative nonlinearity can also give rise to photon

antibunching. Figure 2c shows g
(2)
T (0) as a function of

either χ1 or χ2, where the other parameter is set to zero.
The two nonlinearities have a qualitatively similar effect
on photon antibunching with the main difference being
that the perfect antibunching dip at χ1 = δFP is ab-
sent for the dissipative nonlinearity. While in both cases
antibunching is caused by reduced transmission at the
two-exciton transition, the dissipative nonlinearity ac-
complishes this by reducing the peak height rather than
by shifting its position.

In order to observe antibunching in the presence of loss,
it is necessary that the nonlinearity is large compared to
not only γFP but also γ′. This is illustrated in Fig. 2d,

where we plot g
(2)
T (0) as a function of both γ′ and T0

for a fixed values of χ1 and χ2. In addition, we still
require that γ′ < γFP to ensure high transmission. These
conditions may be summarized as

χ > T0γ > γ′, (6)

where χ stands for χ1 or χ2. In Fig. 2d, these inequali-
ties correspond to the region below the dashed horizontal

line, to the left of the dashed vertical line, and above the
diagonal red line. We point out that strong antibunching
can be observed in the region γFP < γ′ <

√
T0γ below the

red line. However, this region is of little practical rele-
vance as it would be challenging to observe antibunching
given the weak transmitted signal.

We next discuss the feasibility of our scheme with
TMDs. Theoretical calculations [31] have estimated the
interaction energy between two excitons delocalized over
an area A in WS2 (we expect it to be comparable in other
TMDs) as g ≈ 4 µeV µm2/A [32]. The parameter χ1 is
obtained by computing the interaction energy of two ex-
citons whose in-plane wavefunction is proportional to the
electric field profile of the incident laser. For a Gaussian
beam with waist w0, we obtain χ1 = g/(πw2

0), where
we assumed that the interaction is short ranged. The
exciton transition in WS2 occurs at λ0 ≈ 600 nm [33],
which yields χ1 ≈ 13 µeV for a diffraction limited spot
(w0 = λ0/2). With the intrinsic linewidth given by
γ ≈ 3 meV [34], the transmission coefficient of the mirror
must therefore satisfy T0 . 1/230, which is experimen-
tally feasible. In order to prevent the photonic mode from
diverging over the course of ∼230 roundtrips, the mirror
must be curved with a radius of curvature that matches
the incident beam. In practice, the enhancement will be
limited by the loss rate γ′, which depends on the quality
of the material. Values of γ′ < 0.1γ have recently been
achieved [13]. While the current limiting factors are not
fully understood, improved exciton properties have been
observed in suspended devices [35], and further advances
in material quality will likely result in an additional de-
crease of γ′. We note that exciton dispersion places a
lower bound on the loss rate. The bound is determined
by the time scale td = mw2

0/(2~), m being the exciton
mass, after which the exciton wavefunction starts to sig-
nificantly spread out, leading to a reduced overlap with
the photonic mode, and thereby spoiling the Fabry–Pérot
resonance. For our purpose, the effect is expected to neg-
ligible since the associated rate ~/td contributing to γ′ is
found to be less than 1 µeV.

The above considerations indicate that TMDs are a
promising platform for exploring quantum nonlinear op-
tical phenomena. In addition, our approach is compat-
ible with methods that seek to increase the interaction
strength between excitons in order to alleviate the re-
quirements on the loss rate. It has been proposed that
this may be accomplished using excited states of the ex-
citon [31] or by exploiting scattering resonances between
excitons [36]. Interlayer excitons in TMD heterostruc-
tures offer an alternative route as their permanent dipole
moment gives rise to much stronger interactions [37]. Fi-
nally, applying a periodic potential to the TMD can en-
hance the interaction strength by increasing the local ex-
citon density at the potential minima. The potential may
be implemented with a modulation of the dielectric en-
vironment [38] or via the energy landscape arising from
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a moiré pattern in a heterostructure [39].

In summary, we have demonstrated that a partially
reflecting mirror can be used to dramatically enhance
the lifetime of polaritons associated with a resonant two-
dimensional material, which in turn enhances the sensi-
tivity to weak nonlinearities. In contrast to other ap-
proaches of generating nonclassical states of light with
weak nonlinearities, such as the unconventional photon
blockade [40–43], our scheme does not require fine tuning
between the nonlinearity and the loss rate. While we fo-
cused on TMDs, the approach is applicable to other emit-
ters coupled to a single scattering channel such as two-
dimensional arrays of trapped ultracold atoms [21, 22]. In
addition, the approach may be useful as a spectroscopic
tool by narrowing emission lines, which does not require
reaching the quantum nonlinear regime. The scheme can
be naturally extended to multiple emitters such as sev-
eral closely spaced layers of TMDs, which could replace
the conventional mirror entirely [44]. Future work could
explore the crossover into the non-Markovian regime by
moving the emitter sufficiently far away from the mirror
such that retardation is no longer negligible [45, 46].
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A. İmamoğlu for insightful discussions. This work was
supported by NSF, CUA, AFOSR and the V. Bush Fac-
ulty Fellowship.
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der, and A. İmamoğlu, arXiv preprint (2018),
arXiv:1805.04020.
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