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We propose an efficient free-space scheme to create single photons in a well-defined spatio-temporal
mode. To that end, we first prepare a single source atom in an excited Rydberg state. The
source atom interacts with a large ensemble of ground-state atoms via laser-mediated dipole-dipole
exchange interaction. Using adiabatic passage with a chirped laser pulse, we produce a spatially-
extended spin-wave of a single Rydberg excitation in the ensemble, accompanied by the transition of
the source atom to another Rydberg state. The collective atomic excitation can then be converted
to a propagating optical photon via a coherent coupling field. In contrast to previous approaches,
our single-photon source does not rely on strong coupling of a single emitter to a resonant cavity, nor
does it require heralding of collective excitation or complete Rydberg blockade of multiple excitations
in the atomic ensemble.

Single photons can serve as flying qubits for many im-
portant applications, including all-optical quantum com-
putation and long-distance quantum communication and
cryptography [1, 2]. Various sources of single photons
are being explored, most of them use single emitters cou-
pled to resonant cavities or waveguides [3–10]. Free-space
schemes typically rely on the DLCZ protocol [11] for
low-efficiency heralded preparation of a collective spin
excitation of an atomic ensemble followed by its stimu-
lated Raman conversion into a photon [12–14]. Creating
a deterministic source of single photons without requiring
coupling to resonant optical structures remains an out-
standing challenge. Here we show how, in a free-space
setting, the remarkable properties of Rydberg atoms can
be used to map a single atomic excitation on a single
photon emitted into a well defined spatial and temporal
mode.

Atomic Rydberg states with high principal quantum
numbers n ≫ 1 have long lifetimes τ ∝ n3 and strong
electric dipole moments ℘ ∝ n2 [15]. The resulting long-
range, resonant (exchange) and nonresonant (dispersive
or van der Waals) dipole-dipole interactions between the
atoms can suppress more than one Rydberg excitations
within a certain blockade distance [16–19]. An ensemble
of atoms in the blockaded volume can be viewed as an
effective two-level Rydberg superatom [16, 19–23]. A sin-
gle collective excitation of the superatom can be created
by resonant laser(s) and then converted to a photon in a
well-defined spatio-temporal mode [24–29].

There are several complications associated with the
efficient creation of a single coherent Rydberg excita-
tion in an atomic ensemble and its deterministic con-
version into a photon. Creating only a single excitation
requires a completely blockaded atomic ensemble. Ef-
ficient conversion of the excitation into a photon in a
well-defined spatio-temporal mode requires large optical
depth. Hence, the blockaded volume should accommo-
date many atoms, which presumes strong, long-range,
isotropic interactions. Van der Waals interactions be-

tween Rydberg excited atoms can be nearly isotropic [30],
but a blockade range much beyond 10 µm is difficult to
achieve. Large optical depth of the blockaded volume
requires high atomic density which, however, leads to
strong decoherence of the Rydberg-state electrons [31],
and may involve molecular resonances of Rydberg ex-
cited atoms [32]. Dipole-dipole interactions have longer
range, which allows using larger atomic ensembles with
lower densities. Compared to the van der Waals interac-
tion, however, the dipole-dipole interactions are “softer”,
leading to incomplete suppression of multiple Rydberg
excitations within the blockade distance [33].

In contrast, preparing a single, isolated atom in an
excited state with high fidelity is relatively easy. We
propose an efficient free-space technique to convert this
excitation into a single photon in a well defined mode,
without resorting to strong coupling of the atom to a
single cavity mode [3–6]. Instead, we use long-range
dipole-dipole exchange interactions between the Rydberg
states of atoms to map the Rydberg excitation of the sin-
gle “source” atom onto a collective Rydberg excitation
of an ensemble of “medium” atoms. The mapping effi-
ciency is boosted by the collectively enhanced coupling
of the source atom to many medium atoms, but com-
plete Rydberg blockade or strong interactions among the
medium atoms are not required. Subsequently, using a
coupling laser pulse, the collective excitation of the en-
semble of medium atoms having large optical depth can
be converted into a single photon propagating in a phase-
matched direction.

We note a closely related recent proposal to realize a
chiral light-atom interface by tranfering the state of a sin-
gle atom to a spatially ordered array of atoms which acts
as a phased-array optical antenna for photon emission
into a well-defined spatial mode [34].

Consider the system shown schematically in Fig. 1.
We assume that a single source atom, having a strong
dipole-allowed microwave transition with frequency ωud

between the Rydberg states |u〉 and |d〉, is trapped in a
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FIG. 1. Schematics of the system. A single “source”
atom is initially prepared in the Rydberg state |u〉 (top
left). The transition |u〉 → |d〉 of the source atom is cou-
pled non-resonantly to the Rydberg transition |i〉 → |s〉 of
the “medium” atoms (top right) with the dipole-dipole ex-
change interaction D. All medium atoms are initially in the
ground state |g〉. A laser pulse couples |g〉 to the interme-
diate Rydberg state |i〉 with Rabi frequency Ω and detun-
ing ∆ ≫ |Ω|, D. Together with the dipole-dipole exchange
|i〉 |u〉 → |s〉 |d〉, this leads to the transition |g〉 → |s〉 of the
medium atoms detuned by δ. The resulting single Rydberg
excitation of the medium atoms has the spatial amplitude pro-
file S(r) ∝ D(r−rs). The stored excitation can be converted
to a propagating photon E by applying the control field Ωc on
the transition from |s〉 to the electronically excited state |e〉.

well-defined spatial location that can be addressed with
focused lasers. The source atom can be transferred from
the ground state to the excited state |u〉 with unit prob-
ability (see Fig. 1 top left), by either a resonant laser
π-pulse or via adiabatic transfer with a single chirped or
a pair of delayed laser pulses [35, 36].

Consider next an ensemble of N ≫ 1 medium atoms.
The relevant states of the atoms are the ground state
|g〉, a lower electronically excited state |e〉 and a pair of
highly-excited Rydberg states |i〉 and |s〉 having a strong
dipole-allowed transition with frequency ωsi (see Fig. 1
top right). A spatially-uniform laser field couples non-
resonantly the ground state |g〉 to the Rydberg state |i〉
with time-dependent Rabi frequency Ω and large detun-
ing ∆ ≡ ω−ωig ≫ |Ω|. The medium atoms interact with
the source atom via the dipole-dipole exchange |i〉 |u〉 ↔
|s〉 |d〉. To be specific, we assume that the correspond-
ing dipole matrix elements of the medium and source
atoms, ℘si,℘du, are along the y direction. The exchange
interaction strength is then D(R) = C3

|R|3 (1 − 3 cos2 ϑ),

where C3 = ℘si℘du

4πǫ0h̄
, R ≡ (r − rs) is the relative posi-

tion vector between an atom at position r and a source
atom at rs, and ϑ is the angle between R and ℘si,du

(y direction). We assume a large frequency mismatch
∆sa ≡ ωud − ωsi ≃ −∆, |∆sa| ≫ D(R) ∀ R, which re-
quires positioning the source atom outside the volume
containing the medium atoms (see below).

In the frame rotating with the frequencies ω and ωud,

the Hamiltonian for the system is

H1/h̄ = −

N
∑

j=1

[

∆ |i〉j〈i| + δ |s〉j〈s| ⊗ |d〉s〈d|

+(Ωeik0·rj |i〉j〈g| +H.c.)

−[D(Rj) |s〉j〈i| ⊗ |d〉s〈u| +H.c.]
]

, (1)

where index j enumerates the medium atoms at positions
rj , k0 ‖ ez is the wave vector of the laser field, and
δ ≡ ∆ + ∆sa = ω + ωud − ωsg is the detuning of the
product state |s〉 |d〉. Since the intermediate Rydberg
level |i〉 is strongly detuned, ∆ ≃ −∆sa ≫ |Ω|, D, |δ|,
we can eliminate it adiabatically. We then obtain an
effective Hamiltonian

H̃1/h̄ = −
∑

j

[

δ̃j |s〉j〈s| ⊗ |d〉s〈d|

+(D̃je
ik0·rj |s〉j〈g| ⊗ |d〉s〈u| +H.c.)

]

, (2)

where δ̃j ≡ δ̃(Rj) = δ +
|Ω|2−|D(Rj)|

2

∆ is the shifted de-

tuning of |s〉j |d〉 and D̃j ≡ D̃(Rj) = −
D(Rj)Ω

∆ is the

second-order coupling between |g〉j |u〉 and |s〉j |d〉. δ̃(R)
has a weak position dependence stemming from the level

shift |D(R)|2

∆ of |s〉 due to the non-resonant dipole-dipole

coupling, while the level shift |Ω|2

∆ of |g〉 is uniform.
Let us for the moment neglect the (weak) spatial de-

pendence of δ̃, i.e., assume that all the medium atoms
have the same |g〉 → |s〉 transition frequency. Since
by flipping the source atom |u〉 → |d〉 we can create at
most one Rydberg excitation in the medium, we intro-
duce the ensemble ground state |G〉 ≡ |g1, g2, . . . , gN 〉
and a single collective Rydberg excitation state |S〉 ≡
1
D̄

∑N
j=1 D̃je

ik0·rj |sj〉 ( |sj〉 ≡ |g1, g2, . . . , sj, . . . , gN 〉)

with D̄ ≡
(
∑N

j |D̃j |
2
)1/2

. The Hamiltonian (2) then
reduces to that for a two-level system,

H̃1 = −h̄

(

0 D̄

D̄ δ̃

)

(3)

in the basis of states { |G, u〉, |S, d〉}. The eigenstates
and corresponding eigenvalues of this Hamiltonian are

|±〉 =
[

∓ λ∓ |G, u〉 ± D̄ |S, d〉
]

/
√

λ2∓ + D̄2 and λ± =
[

δ̃ ±
√

δ̃2 + 4D̄2
]

/2. In the limit of large negative de-

tuning −δ̃ ≫ D̄, |+〉 ≃ |G, u〉 with λ+ ≃ 0 coincides
with the ensemble ground state. In the opposite limit of
large positive detuning δ̃ ≫ D̄, |+〉 ≃ |S, d〉 with λ+ ≃ δ̃
corresponds to the collective Rydberg excited state of
the ensemble. We can thus use adiabatic passage [36] to
convert the system from the initial ground state |G, u〉
to the Rydberg excited state |S, d〉, by applying a laser
pulse with a chirped frequency ω = ω0 + α(t − t0), such
that δ̃ = α(t − t0) is large and negative at early times
t < t0 and is large and positive at later times t > t0.
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Provided the chirp rate satisfies α < D̄2, the probabil-
ity P |+〉→ |−〉 = e−2πD̄2/α of non-adiabatic Landau-Zener
transition to the eigenstate |−〉 will be small [36]. Since
the coupling D̄ is collectively enhanced by the number
N ≫ 1 of the medium atoms interacting with the source
atom, we can use high chirp rates α to prepare the system
with nearly unit probability in state |S, d〉. Moreover, we
can verify the successful preparation of the medium in the
collective state |S〉 by detecting the source atom in state
|d〉 [44]. We note that adiabatic preparation of spatially-
ordered Rydberg excitations of atoms in a lattice using
chirped laser pulses was studied in [37–41].

We have performed exact numerical simulations of the
dynamics of the system using realistic atomic parame-
ters [44]. We place N ≫ 1 ground state |g〉j atoms in
an elongated volume at random positions rj normally
distributed around the origin, x, y, z = 0, with stan-
dard deviations σz > σx,y. The source atom initially
in state |u〉 is placed at a position rs close to the cen-
ter of the longitudinal extent of the volume and well
outside its transverse width. We apply to the atoms a
pulsed and chirped laser field with the Rabi frequency
Ω and two-photon detuning δ shown in Fig. 2(a). We
simulate the evolution of the state vector of the system
|Ψ1〉 = c0 |G〉⊗ |u〉+

∑N
j=1 cje

ik0·rj |sj〉⊗ |d〉 taking into
account the decay and dephasing of the Rydberg states
[44]. The resulting dynamics of populations PG ≡ |c0|

2

and PS ≡
∑

j |cj |
2 are shown in Fig. 2(b). We obtain a

single collective Rydberg excitation |S〉 of the atomic en-
semble with high probability PS

>
∼ 0.977, which is slightly

smaller than unity mainly due to the decay and dephas-
ing. In Fig. 2(c) we show the final spatial distribution
of the Rydberg excitation density ps(r) ∝ |D̃(r − rs)|

2

which follows the dipole-dipole interaction strength. Our
simulations verify that we can reliably prepare a spin
wave of single collective Rydberg excitation |S〉 with the
spatial wavefunction

S(r) ≃ −

√

ρ(r)D(r − rs)
√

∫

dr3ρ(r)D2(r − rs)
eik0·r.

Consider now the conversion of the collective Rydberg
excitation of the atomic medium into a photon. To that
end, we use a control laser field with wave vector kc

and frequency ωc = ckc acting resonantly on the tran-
sition |s〉 → |e〉 with the Rabi frequency Ωc. The atomic
transition |e〉 → |g〉 is coupled with strengths gk,σ to
the quantized radiation field modes âk,σ characterized
by the wave vectors k, polarization σ and frequencies
ωk = ck. We take kc ‖ k0 so as to achieve resonant
emission of the photon in the phase-matched direction,
k = k0−kc ‖ ez. The frequency and wave number of the
Rydberg microwave transition can be neglected in com-
parison with those of the optical transitions. In the frame
rotating with frequencies ωrg and ωc = ωre (interaction
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FIG. 2. Preparation of a single collective Rydberg excitation
of an atomic ensemble. (a) Time dependence of Rabi fre-
quency Ω (left vertical axis) and two-photon detuning δ (right
vertical axis) of the driving laser. (b) Dynamics of popula-
tions PG and PS of the collective ground and single Rydberg
excitation states of the atoms. (c) Final spatial distribution of
the Rydberg excitation in an elongated volume containing the
atoms: Main panel shows the density of excitation ps(z) along
the longer z axis of the volume (integrated over the transverse
x, y directions), while the left and right insets show the den-
sities ps(x) and ps(y) along x and y. We average over 2000
independent realizations of the ensemble of N = 1000 atoms
with the peak density ρmax ≃ 10 µm−3 and Gaussian distri-
bution with σx,y = 1 µm and σz = 6 µm. The source atom is
placed at xs = 7 µm, ys, zs = 0. In the simulations, we take
the peak Rabi frequency Ωmax = 2π × 10 MHz, the Rydberg
state decay Γs = 10 kHz and dephasing γsg = 10 kHz, and
we use the atomic parameters corresponding to a Cs source
atom with |u〉 ≡ 70P3/2 and |d〉 ≡ 70S1/2, and Rb medium
atoms with |i〉 ≡ 58P3/2 and |s〉 ≡ 57D5/2 [44]. With the
intermediate state detuning ∆ = 9.4Ωmax and the dipole-
dipole interaction coefficient C3 = 11.7GHz µm3, the medium
atoms near the cloud center experience the strongest interac-
tion D ≃ 2π × 5.4 MHz. The corresponding second-order
transition rate is D̃max ≃ 2π × 0.6 MHz, while the collective
coupling rate is D̄ ≃ 2π × 13 MHz.

picture), the Hamiltonian reads

H2/h̄ = −
N
∑

j=1

[

∑

k,σ

gk,σâk,σe
ik·rje−i(ωk−ωeg)t |e〉j〈g|

+Ωce
ikc·rj |s〉j〈e| +H.c

]

. (4)

The state vector of the system can be expanded as |Ψ2〉 =
∑N

j=1

[

cje
ik0·rj |sj〉 + bj |ej〉

]

⊗ |0〉 +
∑

k,σ ak,σ |G〉 ⊗
|1k,σ〉, where |ej〉 ≡ |g1, g2, . . . , ej , . . . , gN〉 and |1k,σ〉 ≡

â†
k,σ |0〉 denotes the state of the radiation field with one

photon in mode k, σ. Using the standard procedure [44],



4

we obtain that the atomic state |e〉 spontaneously de-
cays with rate Γe. Assuming Γe ≫ |Ωc| and eliminat-
ing bj leads to the solution for the amplitudes of photon
emission into states |1k〉,

ak(t) = −g̃k(t)
∑

j

cj(0)e
i(k0−kc−k)·rj , (5)

where g̃k(t) ≡ gk
∫ t

0
dt′

Ω∗
c (t

′)
Γe/2

ei(ωk−ωeg)t
′

e−
∫

t′

0
dt′′ |Ωc(t

′′)|2

Γe/2

and for simplicity we drop the polarization index σ as-
suming scalar and isotropic emission by individual atoms.
In the case of a time-independent control field Ωc, the di-

mensionless coupling reduces to g̃k ≃
gkΩ

∗
c

Γe(ωk−ωeg)/2+i|Ωc|2

for t ≫ w−1. The probability distribution of emitted
photon Pk = |ak|

2 is thus strongly peaked at frequency

ωk = ωeg with a narrow linewidth w = |Ωc|
2

Γe/2
, and has a

narrow angular distribution around k = k0 − kc ‖ ez as
shown in Fig. 3. Our simulations reveal that the state
of the emitted photon |ψph〉 =

∑

k
ak |1k〉 is largely in-

sensitive to the microscopic details of various realizations
of the atomic ensemble. Note that efficient conversion of
the atomic excitation into a photon requires a collinear
geometry kc ‖ k0 for resonant emission at frequency
ωp = c|k0 − kc| ≃ ωeg, while even a small inclination
kc 6 k0 6= 0 disturbs the phase-matching in a spatially-
extended atomic medium and reduces the probability of
photon emission into the well-defined spatial direction.
In the presence of the control field Ωc, the resonant pho-
ton propagating in the optically dense medium in the z
direction is subject to electromagnetically induced trans-
parency (EIT) [12] which suppresses photon reabsorption
and scattering [44].
Similar to cavity QED schemes [3–6] employing stim-

ulated Raman adiabatic passage [35, 36], we can cre-
ate a single photon directly, populating only virtually
the Rydberg state |s〉. To that end, we assume a con-
stant control field |Ωc| < Γe/2 and small decay and
two-photon detuning of the Rydberg state Γs, δ̃j ≪
w. We then obtain a solution for the photon ampli-
tudes as in Eq. (5) with cj(0) → −Dj/∆ and g̃k(t) ≡

gk
∫ t

0
dt′Ω(t)

Ωc
ei(ωk−ωeg)t

′

e−
∫ t
0
dt′′ D̄2(t′′)

w [44]. Thus, with
the source atom in state |u〉, the medium atoms in the
collective ground state |G〉, and the control field Ωc 6= 0,
by turning on the excitation laser Ω we produce a sin-
gle photon on the atomic transition |e〉 → |g〉. This
single-photon wavepacket is emitted with high probabil-
ity into the direction of k ≃ k0 − kc ‖ ez, while its tem-
poral shape can be manipulated by the time-dependence
of Ω(t). The emission of the optical photon is accompa-
nied by the transition of the source atom to state |d〉,
which terminates the conversion process, even if Ω 6= 0.
To produce another photon, we have to reset the source
atom to state |u〉.
To summarize, we have presented a new scheme for

efficient single-photon production, controlled by a sin-
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FIG. 3. Angular probability distribution of the photon emit-
ted by the atomic medium. In the upper polar plot, the polar
angle θx is varied in the x − z plane (azimuth ϕ = 0, π); in
the lower plot, the polar angle θy is varied in the y − z plane
(azimuth ϕ = π/2, 3π/2). The red solid line corresponds to
the control field wave-vector kc ‖ k0; the blue dashed line to
a small inclination kc 6 k0 = 0.04π. In the collinear geometry
(red solid line), the resulting angular width (FWHM) of the
emitted radiation is ∆θx ≃ 0.07π and ∆θy ≃ 0.068π, and the
total probability of radiation emitted into the phase-matched
direction z within the solid angle ∆Ω = 2π(1− cos∆θ), with
∆θ ≃ 0.07π, is ∼ 0.74. The plots are obtained from a single
realization of random positions of Rb atoms with the parame-
ters of Fig. 2, but the quantum state of the emitted radiation
|ψph〉 is highly reproducible for different realizations (m,m′)

of the atomic ensemble, |〈ψ
(m)
ph |ψ

(m′)
ph 〉| >∼ 0.96PS .

gle source atom prepared in an appropriate Rydberg
state and playing the role of a switch. The dipole-dipole
exchange interaction with the source atom enables sin-
gle collective Rydberg excitation of the atomic ensemble
without the requirement of full blockade of the entire
ensemble. Detailed numerical simulations with realistic
experimental parameters demonstrate that this excita-
tion can be converted into a single photon emitted into a
well-defined spatio-temporal mode with better than 70%
probability. The probability that the photon is coher-
ently emitted into the small solid angle ∆Ω ≃ 0.15 sr
(see Fig. 3) is given approximately by P∆Ω ≃ ηN∆Ω/4π
[25], where η ≃ 0.6 is the effective fraction of the medium
atoms participating in the collective Rydberg excitation
|S〉 (see Fig. 2(c)). This probability can be enhanced
by increasing the atom number N , which may, however,
lead to increased Rydberg state dephasing.

In our analysis, we assumed an ensemble of atoms at
random positions and with moderate density and ne-
glected the vacuum field-mediated interactions between
the atoms on the optical transitions. Recently Grankin
et al. [34] have shown that imprinting an appropriate
spatial amplitude and phase on an array of atoms with
subwavelength spacing and coupled to a single atom in
the same way as in our proposal can further enhance the
photon emission probability into the predefined Gaus-
sian (paraxial) mode of the radiation field, which can be
used for quantum state transfer between distant atoms in
free-space quantum networks. We finally note that our
method to convert a single atomic excitation to an optical
photon can be used for microwave to optical conversion
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in hybrid quantum interfaces [42, 43]. For example, the
source atom can be replaced by a superconducting qubit,
which can strongly couple to the Rydberg states of the
medium atoms by a microwave transition.
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