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We present a method to implement two-phonon interactions between mechanical resonators and spin qubits in
hybrid setups, and show that these systems can be applied for the generation of nonclassical mechanical states
even in the presence of dissipation. In particular, we demonstrate that the implementation of a two-phonon
Jaynes-Cummings Hamiltonian under coherent driving of the qubit yields a dissipative phase transition with
similarities to the one predicted in the model of the degenerate parametric oscillator: beyond a certain threshold
in the driving amplitude, the driven-dissipative system sustains a mixed steady state consisting of a “jumping
cat”, i.e., a cat state undergoing random jumps between two phases. We consider realistic setups and show that,
in samples within reach of current technology, the system features non-classical transient states, characterized
by a negative Wigner function, that persist during timescales of fractions of a second.

Introduction.—Over the past decades technological devel-
opments have allowed to implement new classes of extremely
sensitive nanomechanical oscillators, such as membranes or
microcantilevers, that are finding applications in a wide va-
riety of areas, from biological detection [1] to ultrasensitive
mass sensing [2–4] or NMR imaging [5–7]. There has been
a growing interest in studying hybrid systems in which these
mechanical elements are coupled to some other quantum ac-
tor, allowing to explore the quantum limits of mechanical mo-
tion [8–10], with prominent examples such as cavity optome-
chanics setups [11–15]. Many of these works aim to explore
the quantum limit of mesoscopic objects consisting of billions
of atoms by cooling them close to the ground state [16–18]
and generating inherently quantum states, such as squeezed
states [19] or quantum superpositions [20].

In this work, we present hybrid setups that are able to
achieve a two-phonon coherent coupling between a mechan-
ical mode and a spin qubit, described as a two-level system
(TLS). It is known for systems involving some kind of two-
particle interaction plus a nonlinearity [21–36], that the me-
chanical system can evolve into motional cat states. Although
these states are ultimately washed out by decoherence, our
proposed setup features non-classical transient states, charac-
terized by a negative Wigner function, during timescales that
can extend up to seconds. After this, the system reaches a
mixed steady state that has been understood as a cat state
flipping its phase at random times [35]. This offers an at-
tractive platform both for the study of fundamental questions
in quantum mechanics—such as decoherence, spontaneous
symmetry breaking and ergodicity in dissipative quantum sys-
tems [25, 37–39]—and for practical applications where non-
classical mechanical states can be envisaged as a technologi-
cal resource [33, 40–44] .

Our proposal is based on hybrid devices in which a single
spin qubit embedded in a magnetic field gradient couples to
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a mechanical oscillator through the position-dependent Zee-
man shift [45–51]. We consider the qubit to be given by the
electronic spin of nitrogen-vacancy (NV) centers, which are
excellent candidates due to their outstanding coherence and
control properties [52–57]. Several works [58, 59] have ana-
lyzed particular geometries in which the equilibrium position
of the system leaves the spin in a point of null magnetic gra-
dient, leading to a quadratic dependence of the coupling with
the position. These works proposed to use this dependence to
couple two different modes of the oscillator in order to ef-
fectively enhance the linear coupling between one of these
modes and the TLS. In contrast, we propose here to use these
geometries to achieve degenerate, two-phonon exchange be-
tween one mode of the resonator and the TLS, which gives rise
to physical phenomena with no analogue in linearly-coupled
systems [60].

Setup proposal.—We consider an NV center placed on top
of a mechanical oscillator at a position r0 and surrounded by a
magnetic field B(r). An NV center consists of a nitrogen atom
and an adjacent vacancy in diamond, and its electronic ground
state can be described as a S = 1 spin triplet with states |ms〉,
with ms = 0,±1. The Hamiltonian of the system reads (we
set h̄ = 1 hereafter) H = HNV +HM + µBgs S ·B(r0), where
HNV stands for the Hamiltonian of the NV center, HM for
the mechanical mode, and the last term describes a pertur-
bation on the NV center due to the external magnetic field,
where µB is the Bohr magneton, gs = 2 is the Landé factor
of the NV center, and S is its spin operator. The last term
provides the mechanism that couples the qubit and the me-
chanical degree of freedom. We will assume that the me-
chanical mode oscillates only along the z axis, so that the
position of the NV center is given by r0 = (0,0,z), z being
the displacement of the oscillator with respect to the equilib-
rium point. Setting B(r0) ≡ B(z), we can expand the Hamil-
tonian in terms of z up to second order, H ≈ HNV + HM +
µBgsS ·

[
∂B/∂ z(0)(0)z+ 1

2 ∂ 2B/∂ z2(0)z2
]
. Our proposal re-

lies on considering a magnetic field with an extremum at the
position of the NV center, which will cancel the first deriva-
tive in the expansion and provide a second-order coupling to
the mechanical mode. For simplicity, we will consider that
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FIG. 1. (a) Proposed configuration: an NV center in a diamond film
(red) is placed on top of a mechanical oscillator (e.g., a thin mem-
brane) and placed between two magnets with aligned magnetization.
Dimensions have been altered for visual clarity. (b) Magnetic field
lines, computed for two Dy magnetized cylinders of 30 nm diame-
ter separated by a gap of 30 nm. Red (blue)-shaded areas mark the
regions where ∂Bz(x)/∂ z ≈ 0. Both first derivatives are zero at the
position of the NV center—represented by a circle—when the oscil-
lator is at rest. (c) Magnetic field along the z axis for x = 0.

the field has also null second derivatives along the x and y
axis, so that the mechanical mode only couples to Sz. This lat-
ter assumption is not necessary, but we show here a particular
proposal in which this is indeed the case. By writing the posi-
tion operator of the mechanical oscillator as z = zzpf(a+ a†),
with zzpf =

√
h̄/(2meffωm) the zero-point fluctuation ampli-

tude, ωm the resonant mechanical frequency, and a the anni-
hilation operator, the resulting Hamiltonian becomes:

H ≈ HNV +HM +g2 (a† +a)2Sz , (1)

where the two-phonon coupling is given by
g2 =

1
2 µBgs zzpf

2G2, and G2 = ∂ 2Bz/∂ z2(0). The criti-
cal parameters here in order to maximize this coupling are
the second gradient of the magnetic field and the zero-point
motion of the oscillator, which in both cases should be as
high as possible.

Here we focus on cases where the magnetic field is gener-
ated by nanomagnets, which are able to provide high gradi-
ents at short distances [5–7]. In Fig. 1, we propose a partic-
ular arrangement of magnets that yields the required spatial
magnetic field profile. An NV center injected in a diamond
film [61] is placed on top of a resonator of nanometer-scale
thickness that oscillates along the z direction; the extension
of the diamond film should be much smaller than that of the
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FIG. 2. (a) Two-photon coupling rate versus zero-point fluctua-
tion amplitude zzpf of the oscillator, for two Dy magnets separated
by 30 nm. (b) Two-photon coupling rate versus the magnet sep-
aration for three different magnetic materials, for a resonator with
zzpf = 200 fm. (c) Cooperativity versus the oscillator quality factor
Q and the zero-point fluctuations, for a magnet separation of 30 nm,
oscillator frequency ωm/(2π) = 1.8 MHz, temperature T = 10 mK,
and pure-dephasing rate γz/(2π) = 10 Hz. The white line C = 1
marks the onset of quantum effects. Point A corresponds to a fea-
sible point for state-of-the-art technology at mK temperatures [65],
with zzpf = 43 fm and Q = 4.2×109; B is the point taken in most
part of the text for clarity of results: zzpf = 200 fm and Q = 4.2×108

oscillator to minimize any possible impact on its properties.
Diamond films can be compatible, for instance, with silicon
nitride substrates [62–64]. The resonator is positioned in the
gap between two cylindrical nanomagnets with saturated mag-
netization along the z axis. The size of the gap is considered to
be of the order of tens of nanometers. In the region between
the magnets, this geometry yields a strong magnetic field in
the z direction and a negligible field in the x and y directions,
as we show in Fig 1(b-c). Moreover, every component of the
field has a null derivative with respect to z at the middle point.
This gives rise to the quadratic coupling between the NV cen-
ter and the oscillator.

Two-phonon coupling rates.—In order to estimate the
achievable two-photon coupling rate in realistic setups, we
simulated the magnetic field generated by two cylinders of
nanometer size with saturated magnetization for three dif-
ferent materials (Dy, Co and FeCo) [66]. Dy stands as the
best choice due to its high saturation magnetization [7, 67].
Figure 2(b-c) is an example of the simulated magnetic field
for two cylinders of Dy with 30 nm of diameter, 150 nm of
height and separated by a gap of 30 nm. In this configu-
ration, one can obtain values of G2 ≈ 9×1015 Tm−2. The
resulting two-phonon coupling rate g2 is determined by the
zero-point fluctuation amplitude of the oscillator, zzpf, which
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ranges from tens of femtometers in systems such as Si3N4 os-
cillators [65, 68] to hundreds of femtometers in systems such
as carbon nanotubes [69], graphene resonators [70, 71], SiC
wires [47] or Si cantilevers [72]. Figure. 2(a-b) shows g2 ver-
sus zzpf and the separation between the magnets. Residual
linear coupling effects due to imperfect alignment can be dis-
regarded at the two-phonon resonance condition [66].

Quantum effects.—To address the possibility of observing
quantum effects, a relevant figure of merit is the cooperativ-
ity C = 4g2

2/[γzγm(nth + 1)] [48, 73], where γz is the dephas-
ing rate of the qubit, γm = ωm/Q is the oscillator decay rate
(Q being the quality factor), and nth is the average number of
thermal phonons at the oscillator at the temperature T . Val-
ues of the cooperativity C > 1 mark the onset of quantum
effects. The impact of spin relaxation is not relevant here,
since relaxation times can reach hundreds of seconds at low
temperatures [74]. Regarding pure dephasing rates, γz can
achieve room temperature values ∼1 Hz [75] using dynam-
ical decoupling techniques, already employed in very simi-
lar setups [48]. Once γz, T and G2 are established, the co-
operativity C is fully determined by the oscillator parame-
ters, ωm, Q and zzpf. Figure 2(c) shows C versus Q and zzpf
for ωm ∼MHz (typical of systems such as SiC wires [47] or
Si3N4 nanobeams [65]), γz/(2π) = 10 Hz and T = 10 mK.
As an example, an oscillator with ωm/(2π) = 1.8 MHz,
zzpf ≈ 43 fm [65] and Q ≈ 4×109 (point A in Fig. 2(c))
yields C ≈ 0.4 at these conditions, and can reach C > 1 by
reducing the dephasing to γz/(2π) < 4.3 Hz, which has al-
ready been achieved experimentally [75, 76]. Recently, room-
temperature values Q > 108 have been demonstrated in os-
cillators fabricated via soft-clamping and strain engineering
techniques [65, 77], with values Q > 109 expected at dilution
refrigerator temperatures (14 mK) [77]. Therefore, although
demanding, these conditions are withing reach of state-of-
the-art technology. For the sake of clarity of results, we
will consider hereafter a slightly more optimistic value of
zzpf ≈ 200 fm (giving g2/(2π) = 5 Hz), and set Q = 4.2×108

and ωm/(2π) = 1.8 MHz as in Ref. [65] (this choice is shown
as point B in Fig. 2(c)). We take γz/(2π) = 10 Hz and
T =10 mK, giving nth ≈ 115 and C≈ 20. While the proximity
of the NV center to the surface in a diamond film might render
longer dephasing rates than in the bulk, we note that we are
also considering cryogenic temperatures, which is known to
enhance coherence times by several orders of magnitude [74].
At these low temperatures, several techniques exist in order to
minimize the influence of heat induced by, e.g., RF voltage;
most of these solutions are related to the design of heat sinks,
cooling fins, etc., and the selection of proper materials for heat
dissipation [78].

Dissipative dynamics of the driven, two-phonon Jaynes-
Cummings Hamiltonian.—By adding two oscillating mag-
netic fields, one in the x axis with frequency ωx in the MW
regime; and another in the z axis with frequency ωz ∼ ωm,
we obtain [66] an effective, coherently driven two-phonon
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FIG. 3. Signatures of a dissipative phase transition in the steady-
state. (a) Phonon number and fluctuations of the position operator
versus the driving amplitude Ω. (b) Wigner function for three values
of the driving amplitude. Here, g2/(2π) = 5 Hz, Q = 4.2×108,
ωm/(2π) = 1.8 MHz, T = 10 mK, γz/(2π) = 10 Hz.

Jaynes-Cummings Hamiltonian:

H = (ωσ −ωz)σ
†
σ +(ωm−ωz/2)a†a+

Ω(σ +σ
†)+g2(a†2

σ +a2
σ

†), (2)

where σ is the lowering operator of the effective TLS, and
Ω denotes the amplitude of the driving. We will consider the
resonant situation ωσ = 2ωm. In order to describe the dynam-
ics of the system under dissipation, this Hamiltonian needs
to be supplemented with the usual Lindblad terms [79], giv-
ing the master equation for the dynamics of the density ma-
trix, ρ̇ =−i[H,ρ]+(γmnth/2)La[ρ]+(γz/2)L

σ†σ
[ρ], where

LO[ρ] ≡ 2OρO†−O†Oρ − ρO†O. We consider the system
to be actively cooled to a thermal phonon population close to
zero, which can be done, for instance, by means of laser cool-
ing [17, 80, 81] or using another spin qubit [45]. We there-
fore exclude incoherent pumping terms of the kind La† from
the master equation, at the expense of using an increased res-
onator linewidth γmnth, with γm the natural linewidth, and nth
is the number of thermal phonons in the oscillator in the ab-
sence of cooling [48].

The two-phonon Hamiltonian (2) is reminiscent of quan-
tum optical systems with two-photon interactions that have
attracted considerable interest [23, 27–29, 32–34]. Differ-
ent systems with two-particle interactions and some kind of
nonlinearity—e.g., two-photon losses in the case of the degen-
erate parametric oscillator (DPO) [21–25, 30], a Kerr nonlin-
earity [82] or, as in the present case, a TLS [60]—, have been
shown to develop transient cat states [26, 31, 32, 34, 60, 82]
that, through unavoidable single-photon losses, tend to a
steady state characterized by a Wigner function with phase
bimodality [23–25, 36] and no interference fringes. Research
on the DPO has shown that such steady state corresponds to
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FIG. 4. Dynamics of the density matrix and of a single quantum
trajectory. (a) Phonon population versus time. Vertical lines depict
times when a phonon emission process takes place. (b) Wigner func-
tion of the mechanical mode given by the density matrix (upper) and
the wavefunction of a single trajectory (lower), at the times marked
with arrows on the top of panel (a). The last two columns of the bot-
tom row depict a “jumping cat”, at times before and after a phonon
emission process. Parameters are those of Fig. 3.

a succession of random jumps between cat states of opposite
phase when single trajectories are considered [35], i.e., a sus-
tained “jumping cat” [83]. In the following, we discuss the
appearance of analogue nonclassical effects in our system.

Figure 3(a) depicts the phonon population and the variance
of the position operator in the steady state versus the driving
amplitude Ω. In close similarity to the DPO [21–25], we ob-
serve a phase transition characterized by the development of
two lobes in the Wigner function, preceded by some degree of
squeezing. This occurs when the phonon population is ≈ 1, a
point where its dependence with Ω changes from ∝ Ω2 to ∝ Ω.
Note that here, phase bimodality does not originate from the
two-level nature of the driven TLS [84], but is rather a conse-
quence of the phase symmetry of the master equation, which
is invariant under the change a→ −a [25]. Figure 4 shows
the transient dynamics of the oscillator towards the steady
state, computed for the density matrix and for a single quan-
tum trajectory [85] for a system initially in the ground state.
The Wigner function of the oscillator shows an initial squeez-
ing along two directions that is eventually confined in phase
space due to the TLS nonlinearity [66]. Individual quantum
trajectories reveal that the bimodal steady state consists of a
cat state undergoing random phase flips due to single-phonon
losses [35], as shown in the last two columns of Fig. 4(b), that
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FIG. 5. Cattiness C versus time for an initial vacuum state. (a)
Parameters are those of Fig. 3, with γz/(2π) = 10 Hz (solid, blue),
20 Hz (dashed, yellow) and 50 Hz (dotted, red). Inset: Wigner func-
tion at the time of maximum C , t ≈ 51 ms. (b) Ω/(2π) = 3.18 Hz
and parameters of point A in Fig. 2(c), consistent with Ref. [65] at
T = 10 mK: zzpf = 43 fm (g2 ≈ 0.23 Hz), Q = 4.2×109 (estimated),
and γz/(2π) = 1 Hz, giving C ≈ 4.

capture two times, before and after a single-phonon emission
event. Each of these cat states has an extremely long lifetime,
surviving with fidelities F > 0.99 for times longer than a mil-
lisecond [66].

Transient non-classical states.— The high quality fac-
tors of state-of-the-art nanoresonators [65] allows for non-
classical states to develop and evolve in timescales of tenth
of a second before every trace of coherence is washed out.
We show this by plotting the evolution of the “cattiness”
C = N (ρ)/N (ρcat), defined by dividing the integrated neg-
ative parts of the Wigner function of the state by that of a
reference cat state [32], so that C > 0 only for nonclassi-
cal states and = 1 for cat states. The results shown in Fig. 5
demonstrate that we can observe unambiguous nonclassical
features lasting up to seconds even with state-of-the-art se-
tups [65]. We discuss several routes to detect these quantum
states in Ref. [66]. Once in the steady state, a feedback proto-
col has been proposed [35] in order to enhance the decay rate
only when the system is in one of the two possible cat states,
and therefore stabilize the system in the other. We note that
the combination of recently developed single-phonon detec-
tors [86, 87] and the optical control of decay via active cooling
makes the system proposed here an attractive platform to im-
plement such feedback protocols, e.g., switching between two
effective quality factors—by changing the driving amplitude
of the cooling laser—whenever a single phonon is detected.
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