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Abstract 
 
We consider Schloegl models (or contact processes) where particles on a square grid 
annihilate at rate p, and are created at rate kn =!(!#$)

&(&#$)
  at empty sites with n particles in a 

neighborhood, WN, of size N. Simulation reveals a discontinuous transition between 
populated and vacuum states, but equistable p=peq determined by stationarity of planar 
interfaces between these states depend on interface orientation and WN. Behavior for 
large WN follows from continuum equations. These also depend on interface orientation 
and WN-shape, but a unique peq=0.211376… emerges imposing a Gibbs phase rule. 
 
Text 
 

Basic open questions remain regarding phase transitions between steady-states 
in statistical mechanical models of non-equilibrium systems where a free energy 
framework is not available to aid analysis [1-5]. For discontinuous transitions with a 
single control parameter, p, the Gibbs phase rule in equilibrium systems requires that 
these transitions occur at a unique p = peq where the two phases coexist with equal 
chemical potentials [6]. For non-equilibrium systems, phase coexistence or equistability 
is usually determined by stationarity of a planar interface separating the two phases 
[7,8], a criterion also applicable to equilibrium systems. However, for non-equilibrium 
systems, phase coexistence can occur over a finite range of control parameter, p (so-
called generic two-phase coexistence, 2PC) [9-14]. This feature can be manifested by a 
dependence of peq on interface orientation. In a regime of generic 2PC, both states are 
in some sense stable against perturbation by the other state. Such behavior is 
manifested, e.g., in Toom’s model [9-11], pinned interface models [12], and certain 
contact processes [13,14]. In addition to elucidating poorly understood generic 2PC, 
related challenges remain for characterization of metastability and associated 
nucleation phenomena [15-18]. 

To advance fundamental understanding of these issues, it is desirable to 
construct suitable single-component stochastic lattice-gas models with simple 
“symmetric rules” (avoiding an asymmetry in Toom’s rules and the complexity of 
heterogeneous interface pinning models or of multi-component models). Furthermore, 
the models are naturally constructed to exhibit mean-field (MF) analysis bistability of 
steady-states. MF bistability is a ubiquitous phenomena in both equilibrium systems 
(e.g., van der Waals equation of state) and in diverse non-equilibrium systems 
(describing catalysis, spatial epidemics, population dynamics, etc.) [19,20]. It can signal 
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the presence of a discontinuous transition in the stochastic model where fluctuations 
and correlations generally preclude exact analysis. We will explore a suitably crafted 
class of models motivated by Schloegl’s second model for autocatalysis [13,14,17,20-
24] where particles reside at the sites of a square lattice. Particles spontaneously 
annihilate at rate p, and are created autocatalytically at empty sites if there are n ³ 2 
particles within a prescribed neighborhood of that site. These models are equivalent to 
spatial contact processes with threshold 2 describing the spread of epidemics 
[13,14,25-31]. In this application, empty (filled) sites in the Schloegl model are 
reassigned as healthy (infected) sites. Then, infected sites recover at rate p, and 
healthy sites can become infected given two or more nearby infected individuals. Such 
contact processes are also adopted to describe, e.g., the spread of information.  

Often the neighborhood influencing particle creation (or infection) includes just 
four nearest-neighbor (NN) sites. Studies of these models revealed a discontinuous 
phase transition exhibiting generic 2PC [13,14,17]. However, this is not broadly 
recognized or accepted [30,31], perhaps since a prominent study by Grassberger [22] of 
one realization of Schloegl’s second model revealed a continuous transition (but this 
does not imply the same is true of other realizations). Here, we allow the possibility of 

general neighborhoods, WN, of N sites, and judiciously select creation rates kn = 
'&#(!#()

'&!)
=

'!()

'&()
= !(!#$)

&(&#$)
 to ensure that all models share the same MF kinetics (see below). Our 

extension to general “non-local” neighborhoods reflects a strategy used for elucidation 
of critical phenomena in equilibrium [32,33] and non-equilibrium [34,35] models, and 
connects with classic non-local continuum contact processes for epidemic or 
information spread with long-range infection or communication [36]. Furthermore, 
construction of this general class of models allows us to address a postulate by 
Grinstein and coworkers [37] that model discreteness is not intrinsic to generic 2PC, i.e., 
if a discrete model incorporates features inducing generic 2PC, then the same should 
hold for the analogous continuum model. We find that this is not the case for our 
models. 

In this Letter, first for our new appropriately crafted class of non-local Schloegl 
models, we develop an exact master equation based formulation describing model 
behavior importantly including heterogeneous states. Next, we present results from 
suitably tailored Kinetic Monte Carlo (KMC) simulations within a constant-concentration 
ensemble precisely assessing model behavior both for small WN where 2PC is revealed, 
and for large WN where surprisingly a unique and universal peq emerges. For deeper 
understanding of the latter, we provide an analytic treatment of interface propagation for 
large WN in terms of continuum integro-differential equations (IDEs) which are rigorously 
derived from the above exact heterogeneous master equations. While stationary front 
solutions for continuum reaction-diffusion equations (RDEs) can often be analyzed by 
direct mapping onto a Hamiltonian problem [20], this is not the case for IDEs. 
Nonetheless, exact analysis of the IDE is achieved by mapping onto an infinite-
dimensional dissipative dynamical system. This integrated combination of tailored KMC 
simulation and novel analytic analysis enables a significant advance in the current 
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limited understanding of subtle generic 2PC phenomena and of the applicability or 
otherwise of Gibbs type phase rules for non-equilibrium systems.   

For spatially homogeneous states, the overall fraction or concentration, C=C(t), 
of populated sites in our models satisfies  
 
d/dt C º R(C, p) = -pC + Ktot,         (1) 
 
for total particle creation rate per site Ktot = å 2£n£N kn Pn (1-C). Here Pn is the probability 
of exactly n populated sites in WN which reflects non-trivial spatial correlations. If p is not 
too large, there will exist an populated steady-state with C=Cact(p)>0, and C(t)®Cact(p) 
for sufficiently high C(0). One finds that Cact(p)»1-p, as p®0, since Ktot(p) » kN(1-p) =     
1-p. For sufficiently large p, annihilation overwhelms particle creation, and C(t)®Cvac(p) 
º0, the absorbing vacuum steady-state. This absorbing state exists for all p > 0. Finally, 
we note that a MF treatment neglecting spatial correlations in site population implies 
that Pn = '𝑁𝑛)𝐶

!(1 − 𝐶)&#!. Consequently, the MF Ktot and R(C) are independent of WN, 
and given by 
 
Ktot(MF) = (1-C)C2, and RMF(C, p) = -pC + (1-C)C2.      (2) 
 
The MF steady states are given by C±(p) = ½ ± ½(1-4p)1/2, for 0 £ p £ ¼, and C=0 (the 
vacuum). C+ corresponds to the stable populated state, and C- to an unstable state. As 
an aside, we remark that the same MF kinetics applies for Durrett’s N=4 model where 
W4 includes NN sites and creation rates satisfy k = m/4 where m is the number of 
diagonal NN populated pairs in W4 [13,25]. 

Analysis of spatially heterogeneous states, and specifically the propagation of 
interfaces between populated and vacuum steady states, is central to assessment of 
equistability. Thus, we develop an exact heterogeneous version [24,38,39] of (1). Let Ci,j 
= P[xi,j] denote the ensemble-averaged probability that site (i,j) is occupied (x), and P[oi,j] 
the probability that site (i,j) is empty (o), so that P[xi,j] + P[oi,j] = 1. Also, let                  
P[oi,j – xk,l – xm,n] denote the probability that (i,j) is empty and both (k,l) and (m,n) are 
occupied, etc. Then, one has that 
 
d/dt Ci,j = -p Ci,j + Ktot(i,j),         (3) 
 
where Ktot(i,j) denotes the total rate of particle creation at site (i,j). Ktot(i,j) involves a sum 
over contributions for each possible configuration of the neighborhood WN(i,j) of empty 

site (i,j) with n ³ 2 populated sites associated with rate kn =
'!()

'&()
. Each such contribution 

can be partitioned into '𝑛2) equal contributions of 1/'𝑁2) times the relevant configuration 

probability for each of the '𝑛2) pairs of populated sites. Combining all contributions 
associated with a specific populated pair, Ktot(i,j) reduces exactly to a sum over 3-site 
probabilities with (i,j) is empty and the specific pair populated, 
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Ktot(i,j) =  ∑ 𝑃[𝑜7,9 − 𝑥7;7¢,9;9¢ − 𝑥7;7¢¢,9;9¢¢](7¢,9¢)¹(7¢¢¢,9¢¢)ÎW=  /'𝑁2),    (4) 
 
The sum has '𝑁2)

 terms avoiding double-counting pairs of sites in WN. This exact 
reduction from (N+1)-site to 3-site probabilities follows from our special choice of kn. 
Applying (4) for uniform states immediately recovers the MF result (2) after factorizing 
the 3-site probability. More significantly, (4) will facilitate analytic treatment of behavior 
for large WN, as described below. 

Next, we assess model behavior from KMC simulation. For discontinuous 
transitions, constant-concentration (CC) simulation [13,40,41] is particularly efficient. 
One selects a target concentration, Ct, and by default initially populates sites randomly 
with C » Ct. Then, one picks a site at random, and attempts to create (annihilate) a 
particle at that site if the current concentration satisfies C<Ct (C³Ct).  Tracking relative 
creation and annihilation rates produces a p=pt corresponding to C=Ct. KMC results for 
steady-state C(p) versus p are shown in Fig.1 mainly for square WN. A discontinuous 
transition at p=peq(N) occurs for all WN, where peq(N) » peq(¥) - c/N, for large N, for both 
the square and circular WN, and where peq(¥)»0.2113(1) appears independent of 
neighborhood shape. See Fig.2. Simulated configurations for Ct »0.5 directly reveal 
phase separation. Convergence to MF behavior is evident for large N, as elucidated 
below.  
 

 
FIG.1. Steady-state C versus p for square WN for N=L2-1 with L³3, and for N=4 from 
KMC; C=0 above the transition. MF behavior is also shown. Inset: S=1 strip geometries 
for N=4,128. 
 



5 
 

 
 
FIG. 2. peq(N) for (a) square and (b) circular WN. 
 

Refinement to the above basic CC simulation analysis is needed to assess any 
orientation-dependence of equistability. Here, one starts with a strip of populated sites 
with selected orientation or slope, S, which is preserved provided the simulation 
maintains a strip geometry. Results of such simulations reveal an unambiguous 
variation of peq(S) with S for N=4 with NN sites (a distance r = a from the empty site for 
lattice constant a), N=8 with 4NN sites (r = Ö5a), N=8 with NN & 3NN sites (r = a, 2a), 
and N=12 (with r = a, 2a, 3a). See Table I. For N = 8 with NN & 2NN sites (r = a, Ö2a) 
and for N>8, it is difficult to quantify any weak S-dependence of peq(S), although 
plausibly this persists. In the simulations of Fig.1 with random initial conditions, peq 
reflects an average over S of peq(S). 
 
Table I: peq(S) versus S from CC simulations (1024x1024 cell with PBC for 105 MCS) 
with strip geometries for indicated WN. Uncertainties from 45 simulations for 5 different 
Ct from 0.62-0.70. Less reliable results for N=4 with S=0 are omitted (cf. [13,24]). 
 
Slope S N=4 (r = a) N=8 (Ö5a) N=8 (a,2a) N=8 (a,Ö2a) N=12(a,2a,3a) 
0     ------- 0.151121(2) 0.147948(13) 0.146807(3) 0.168721(12) 
1/6 0.080480(8) 0.151111(1) 0.147939(6) 0.146802(2) 0.168766(9) 
1/5 0.081151(9) 0.151109(1) 0.147957(6) 0.146808(1) 0.168771(7) 
1/4 0.081978(8) 0.151100(1) 0.147976(7) 0.146808(1) 0.168793(8) 
1/3 0.082974(10) 0.151090(1) 0.148004(6) 0.146806(1) 0.168828(7) 
1/2 0.084134(13) 0.151070(1) 0.148086(9) 0.146807(2) 0.168899(10) 
1 0.084941(40) 0.151037(2) 0.148134(10) 0.146806(2) 0.169000(11) 

 
Henceforth, we focus on providing insight into limiting behavior for large compact 

neighborhoods as N®¥. The distribution, Pn, of the number n of populated sites within 
WN becomes narrowly distributed about the mean n = N×C, so that Ktot = å 2£n£N kn Pn(1-C) 
» kn=NC (1-C) ® (1-C)C2, as N ® ¥ explaining the recovery of MF kinetics. However, our 
focus is on heterogeneous states. Thus, we consider a coarse-grained spatially 
continuous description of the concentration C(x, t) = Ci,j, where x = (x,y) = (ia, ja). Since 
sites (i,j), (i+i¢,j+j¢), and (i+i¢¢,j+j¢¢)  appearing in the sum in (4) are typically far-separated, 
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correlations between the occupancies of these sites should be negligible. Then, 
factorizing 3-site probabilities and converting (3) to coarse-grained continuum notation 
yields 
   
¶/¶t C(x, t) = -p C(x, t) + Ktot(x, t),          (5) 
 
where Ktot(x, t) » [1-C(x, t)] [a-2N-1 òòW= dx¢ C(x+x¢, t)] 2.     (6)  
 
It is the availability of this exact integro-differential equation (IDE) which will allow the 
possibility of exact analysis and elucidation of model behavior for large N. 

Specifically, the IDE enables analysis of the evolution of planar interfaces with 
normal n separating the populated and vacuum states where C(x, t) = C(x×n - V t) with C 
® 0 (Cact), as x×n ® -¥ (+¥). We will focus on LxL square neighborhoods, and circular 
neighborhoods of radius R. To this end, we introduce a naturally rescaled spatial 
variable u µ x×n, and recast (5) for planar interfaces as  
 
¶/¶t C(u, t) = -pC(u, t) + [1-C(u, t)][ ò du¢ K(u¢) C(u+u¢, t) ]2,    (7) 
 
where even K(u) satisfies ò du K(u) = ò du u2 K(u) = 1 and K(u) > 0 for -us < u < +us. For 
an LxL square neighborhood, vertical interfaces correspond to u = Ö12 x/L and K(u) = 
1/Ö12 with us =Ö3, and diagonal interfaces to u = Ö12 (x-y)/L and K(u) = (1 - |u|/Ö6)/Ö6 
with us =Ö6. For a circular neighborhood of radius R, one has that u = 2x/R and K(u) =  
p-1(1- u2/4)1/2 with us =2. (7) has solutions of the form C(u, t) = C(u-vt), but we focus on 
stationary interfaces (v=V=0) corresponding to p=peq. The feature that K(u) depends on 
interface orientation and neighborhood shape suggests that the same is true of peq, i.e. 
that generic 2PC persists as N®¥ in the spirit of the Grinstein hypothesis [37]. 
Remarkably, we show that this is not the case! 
 It is also instructive to note that numerical analysis of (7) introduces a periodic 
spatial grid uj = jus/M, and sets C(uj, t) = Cj(t). Then, a standard composite quadrature 
rule converts (7) into so-called lattice differential equations (LDE) [42,43] 
 
d/dt Cj = -pCj + (1-Cj) [å-M £ m £ +M Km Cj+m]2,      (8) 
       
where Km = K(mus/M)/Ksum = K-m for -M < m < +M, K±M = ½ K(±us)/Ksum, and Ksum =  
½K(-us) + å-M < m < +M K(mus/M) + ½K(+us). The constraint å-M £  m £ +M Km = 1 for any M 
ensures that (8) supports concentration profiles with the appropriate asymptotic 
behavior Cj ® Cact(p), as j ® ¥. 
 To analyze stationary profile solutions, it is convenient to introduce non-analytic 
MF-type kinetics, RMFN(C, p) = -2[pC/(1-C)]1/2 + 2C, which has the same steady-states 
as RMF(C, p) in (2). Then, the time-invariant forms of (7) and (8) at p = peq become  
 
D° C(u) º 2 ò0 < u¢ < us du¢ K(u¢) [C(u+u¢) - 2C(u) + C(u-u¢)] = -RMFN(C(u), peq).  (9) 
 
where D° C(u) can be regarded as a non-local second derivative (reducing to ¶2/¶u2 C(u) 
in the “diffusion approximation” [36]) and 
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DK Cj º 2 å+1 £ m £ +M Km (Cj+m - 2Cj + Cj-m) = -RMFN(Cj, peq),    (10) 
 
where DK Cj constitutes a discrete version of a second derivative. (9) and (10) also 
prompt consideration of stationary solutions with the appropriate asymptotics for 
 
¶2/¶u2 C(u) = -RMFN(C(u), peq).        (11) 
 
Equation (11) can be regarded as the steady-state form of a non-analytic reaction-
diffusion equation (RDE). Our key point here is to emphasize the similarity in form of all 
of (9), (10), and (11). In all cases, peq is not known apriori. 
 Complete analysis of stationary profiles is non-trivial for (9) and (10). However, 
integrating the various types of second derivative over the profiles gives the difference 
of the corresponding first derivatives evaluated at u = ±¥ which vanish. Thus, we 
conclude that ò-¥ < u < +¥ RMFN(Ceq(u),peq) du = 0 for both (9) and (11), and the analogous 
discrete condition applies for (10). However, (9) and (11) do not have the same 
stationary profile. Asymptotic analysis reveals exponential decay, C®Cact as u or j®¥, 
but the decay rate depends on the form of K(u), i.e., on interface orientation and WN-
shape, for (9), and is different for (11). Similarly, asymptotic decay C®0 is exponential 
as u or j ® -¥ where C and Cj ®0 for (9) or (10) reveals faster than exponential decay, 
but one finds that C(u)~peq(u-u0)4/36, for u³u0, with C(u)º0 for u£u0 (for finite u0) for (11). 
Thus, while profiles for (9) and (11) are very similar in overall form (Fig.3a), they differ 
fundamentally in detail. Nonetheless, we show that (9)-(11) all share the same peq! 
 

 
 
FIG. 3. (a) Stationary profiles at p = peq for the IDE (9) for constant K(u), and the RDE 
(11) where u0 » -3.5708379. Profiles have C(0) = Cact/2. (b) VMFN(C) versus C from (12) 
for p = 0.20, p = peq(MFN), p = 0.22. 
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 Although it is not the problem of central interest, it is instructive to now provide a 
more complete analysis for (11) after introducing an effective potential 
 
VMFN(C, p) = ò0<C¢ <C RMFN(C¢, p) dC¢ = 2p1/2[C(1-C)]1/2 - p1/2cos-1(1-2C) + C2, (12) 
 
so that RMFN(C, p) = ¶/¶C VMFN(C, p). Fig.3b shows the form of VMFN(C, p). Then, (11) 
can be regarded as describing the motion of a pseudo-particle with position C at time u 
in an external potential VMFN. Conservation of energy for this system implies that E(u) = 
½(¶C/¶u)2 + VMFN(C, p) is u-independent. For the stationary profile at p = peq, the 
pseudo-particle starts at the potential maximum at C = 0 at time u = -¥ with negligible 
velocity, and moves down the potential landscape reaching the other maximum at C = 
Cact only at time u = +¥.  This requires equal height potential maxima (see Fig. 3b), so 
that VMFN(Cact, peq) = 0 mimicking a Maxwell-type construction balancing positive and 
negative areas under RMFC(C) for 0 < C < Cact. This relation implies that 
 
(peq)1/2 cos-1[-(1-4peq)1/2] = ½ + peq + ½ (1-4peq)1/2,     (13) 
 
which yields peq = peq(MFN) = 0.2113763204128337… 

Analysis of (9) and (10) is more challenging given the lack of a direct mapping 
onto Newtonian dynamics. However, we can embed these time-independent problems 
into infinite-dimensional dynamical systems incorporating Hamiltonian structure together 
with dissipation. All of (9)-(11) correspond to stationary solutions of dynamical equations 
 
¶2/¶t2 C = - g ¶/¶t C + D* C - ¶/¶C ṼMFN(C, p),      (14) 
 
where ṼMFN(C, p) = -VMFN(C, p) is a double-well potential, g > 0 introduces dissipation, 
and where D*=D° for (9), D*=DK for (10), and D*=¶2/¶u2 for (11). 

We consider first the discrete case (10). C is replaced by Cj in the LDE (14) 
which constitutes a dynamical problem involving an infinite elastic chain of pseudo-
particles with displacements Cj subject both to an external potential and to damping. We 
define total kinetic, elastic and external potential energies as 
 
K = ½ å-¥ < m < +¥ (d/dt Cm)2,   Velast = å1 £ i £ +M å-¥ < k < +¥ ½ Ki (Ck+1 - Ck)2,   
  
and Vext(p) = å-¥ < m < +¥ ṼMFN(Cm, p),        (15) 
 
respectively. Then, it is straightforward to show that the total system energy, Etot = K + 
Velast + Vext(p), decreases monotonically with increasing time, t, for g >0. 

Thus, propagating interface solutions of the LDE (14) must move in a direction 
corresponding to displacement of the less stable by the more stable steady state, where 
these correspond to higher and lower local minimum of ṼMFN, respectively.  For p = 
peq(MFN) where the local minima of ṼMFN are equal, interface propagation would be 
inconsistent with the feature that Etot should be monotonically decreasing. Thus, the 
LDE (14) for all M >1 share the same peq as the continuum RDE [44]. Numerical 
analysis supports this result. 
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Since the LDE recover the IDE as M®¥, the IDE also have the same peq. An 
alternative argument notes that the IDE (14) describes the dynamics of a continuum 
elastic material with damping and subject to an external potential. Elastic, external, and 
kinetic energy functionals can be constructed generating the evolution equation (14) via 
functional differentiation. Then, the argument used above shows that a stationary 
solution only exists for p = peq(MFN). In conclusion, the IDE and LDE for all interface 
orientations and WN-shapes, and the RDE all share the same peq = 
0.2113763204128337… 
 In summary, we explore a class of Schloegl or contact models with spontaneous 
particle annihilation, and autocatalytic particle creation requiring n ³ 2 populated sites in 
some neighborhood, WN. Models have common MF kinetics. They exhibit a 
discontinuous transition between populated and vacuum states. Orientation-dependent 
equistability is found for small WN, and might be expected for large WN given the form of 
the governing IDEs. However, while interface profiles shape depends on orientation as 
N®¥, we find a unique equistability point which is shared by related LDEs and 
continuum non-analytic RDEs (see also [45]). We thus establish a Gibbs phase rule for 
these non-equilibrium models as N®¥. This elucidation of non-equilibrium phase 
transitions, particularly poorly understood generic 2PC behavior, is enabled by a 
combination of tailored KMC simulation and exact analytic treatment of spatiotemporal 
behavior for N®¥.  
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