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Drawing an analogy to the paradigm of quasi-elastic neutron scattering, we present a general
approach for quantitatively investigating the spatiotemporal dependence of structural anisotropy
relaxation in deformed polymers by using small-angle neutron scattering. Experiments and non-
equilibrium molecular dynamics simulations on polymer melts over a wide range of molecular weights
reveal that their conformational relaxation at relatively high momentum transfer @ and short time
can be described by a simple scaling law, with the relaxation rate proportional to @. This peculiar
scaling behavior, which cannot be derived from the classical Rouse and tube models, is indicative of
a surprisingly weak direct influence of entanglement on the microscopic mechanism of single-chain

anisotropy relaxation.

Dynamics of polymers are characterized by a remark-
ably wide range of length and time scales. Historically,
the development of quasi-elastic neutron scattering tech-
niques has provided a powerful tool for understanding
the microscopic details of polymer motions in the quies-
cent, state, where the spatial and temporal dependence
of dynamics is encapsulated in the measured coherent
and incoherent dynamic structure factors or correspond-
ing intermediate scattering functions in Fourier space [1-
3]. The application of quasi-elastic neutron scattering to
polymers undergoing mechanical deformation and flow
has so far been limited by serious theoretical and practi-
cal difficulties, despite some technical progress [4, 5]. In
this context, time-resolved small-angle neutron scatter-
ing (SANS), based on either ex-situ or in-situ methods,
stands out as a different and alternative approach to elu-
cidating the spatiotemporal relation of molecular motions
in the non-equilibrium, deformed state.

In this Letter, we describe a quantitative method for
analyzing the structural anisotropy relaxation of poly-
mers, by drawing an analogy to the paradigm of quasi-
elastic neutron scattering. To illustrate our approach,
let us consider the case of small-angle neutron scattering
from a mixture of two identical polymers, one deuterated
and the other protonated, where the scattering intensity
1(Q;t) is dominated by the single-chain structure factor

5(Q;t) [6, 7:
1Q:1) o S(Qi1) = 7z S (1R 0-mn@l) (1)

m,n

Here R,, and R,, are the position vectors of the nth

and mth segments of a polymer chain of length N, re-
spectively. The notation f(...;t) is used to emphasize
the fact that we are measuring the time evolution of the
quantity f(...), instead of its time correlation. For a
step-strain experiment in which the sample is deformed
instantaneously at time ¢t = 0, S(Q);t) describes the re-
laxation of the perturbed polymer structure towards the
equilibrium state. The approach we introduce here ex-
ploits the so-called spherical harmonic expansion tech-
nique [8-14]. In general, the single-chain structure factor
can be decomposed by a series of spherical harmonics:
S(Q;t) =3, Sm(Q; )Y ™(0, ¢), where S™(Q;t) is the
expansion coefficient corresponding to each real spheri-
cal harmonic function Y, (0, ¢). For the aforementioned
step-strain relaxation experiment, a class of anisotropic
structural relaxation functions ¢;"(Q;t) can be defined
for all the [ > 0 terms:

¢ (Q;1) = 57" (Q:1)/57"(Q; 0). (2)

These functions bear an apparent resemblance to the
classical intermediate scattering functions and encapsu-
late the essential spatial and temporal information about
the anisotropic single-chain structure.

To demonstrate the usefulness of this new approach,
we performed small-angle neutron scattering experiments
on a series of uniaxially deformed polymers at the EQ-
SANS beamline at the Oak Ridge National Laboratory
and the NGB 30m SANS beamline at the National In-
stitute of Standards and Technology. Our experimen-
tal system consisted of isotopically labeled polystyrenes
(PS) of three different molecular weights, which we shall
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FIG. 1. (a) Dynamic mechanical spectra of PS500K, PS100K,
and PS30K at 130°C. (b)-(d): Relaxation of engineering stress
Oeng after a large step uniaxial extension to a stretching ratio
A = 1.8. The initial Rouse Weissenberg numbers Wigr; =
vTr/lo of the step deformation are 5.6, 5.0, and 40, for PS30K,
PS100K, and PS500K, respectively.

refer to as PS30K(h-PS: M,,: 33.5 kg/mol; d-PS: M,,:
35.4 kg/mol; h/d = 90 : 10), PS100K(h-PS: M,: 101
kg/mol; d-PS: M,: 115 kg/mol; h/d = 90 : 10), and
PS500K (h-PS: M,,: 450 kg/mol; d-PS: M,,: 510 kg/mol;
h/d = 5 : 95). Their dynamic mechanical spectra are
shown in Fig. 1(a). While PS30K has an M, approx-
imately two times that of the entanglement molecular
weight, its linear viscoelastic spectrum is still character-
istic of that of an unentangled melt. On the other hand,
the two high molecular weight systems exhibit the typ-
ical behavior of entangled polymers. The PS samples
were uniaxially elongated on an RSA-G2 solid analyzer
in their melt state to a stretching ratio A = 1.8, allowed
to relax for different amounts of time after the step de-
formation [Figs. 1(b), 1(c), and 1(d)], and subsequently
quenched to the glassy state by pumping cold air into
the environmental test chamber. In our experiments, the
time required to effectively freeze the large-scale molec-
ular motions was negligibly small (< 0.0275) compared
to the Rouse or reptation relaxation times, ensuring that
the evolution of S(Q) could be captured with sufficient
temporal accuracy. More details of the sample charac-
teristics and the experimental procedures are provided
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FIG. 2. Relaxation of the leading anisotropic expansion co-
efficient S9(Q) after a step deformation. (a) PS30K at 0,
0.1, 0.2, 0.4, 0.6, and 17r. (b) PS100K at 0, 0.5, 1, 2, 3, 6,
and 107r. (c) PS500K at 0, 0.5, 1, 3, 10, and 207r. Solid
lines: guide to eye. The SANS spectra at the beginning and
the end of the relaxation experiments are shown on the right,
with different color schemes for each sample.

in the Supplemental Material [15].

The spherical harmonic expansion technique outlined
in our previous work [12] allows us to transform the
anisotropic two-dimensional SANS spectra during stress
relaxation into plots of wavenumber-dependent expan-
sion coefficients (Fig. 2). The axial symmetry of the uni-
axial deformation eliminates the dependence of S(Q);t)
on ¢ and forbids all the m # 0 and odd [ terms, namely:

S@it) =Y St (0). (3)

l:even

In this work, we confine ourselves to the analysis of
the leading anisotropic expansion coefficient S9(Q;t)
and its corresponding relaxation function ¢9(Q;t) =
S9(Q;t)/S9(Q;0). In the Supplemental Material [21],
we show that according to the classical theory the tensile
stress of Gaussian chains is determined by the two-point
spatial correlations associated with only the real spheri-
cal harmonic function Y (6, ¢). Therefore, ¢3(Q;t) con-
tains the relevant information of the structural changes
underlying the macroscopic stress relaxation.

The anisotropic structural relaxation function ¢9(Q;t)
can be examined by presenting ¢9(Q;t) as a function of
the duration of stress relaxation ¢ at different scattering
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FIG. 3. Anisotropic structural relaxation function ¢$(Q;t) as a function of the normalized relaxation time t/7r (with 7r

being the Rouse relaxation time) at different @Qs. (a)-(c):

Comparison of experiments and theories. (d)-(f): Comparison of

simulations and theories. To put these results in perspective, the momentum transfer () is normalized by the equilibrium radius
of gyration, Ry, of the polymer. The initial Rouse Weissenberg numbers in the MD simulations are 5.56, 6.08, and 41.8, for
N = 120, N = 500, and N = 2000, respectively. The same rates are used in the corresponding theoretical calculations. The

GLaMM calculations include the “local fluctuation” effect [55].

wavenumbers @ [Figs. 3(a), 3(b), and 3(c)]. This ap-
proach, in its apparent form, is analogous to the classical
way in which the intermediate functions of polymers are
analyzed [3]. Here, we focus on the intermediate- and
high-@ regions, i.e., R,Q 2 1, corresponding to length
scales that are roughly equal to or smaller than the size of
the polymer coil. Figures 3(a), 3(b), and 3(c) reveal that
the anisotropy relaxation depends highly on the length
scale probed by the scattering experiment — the ¢9 at
high @s relax much faster than those at low @s. This
result is in accordance with our current general under-
standing of polymer dynamics. For example, the local
segmental relaxation involving a few successive repeat-
ing units is much more rapid than the reorientation of
the end-to-end vector of the entire polymer chain. How-
ever, it is worth noting that neither the affine deformation
model [23-25], which assumes the same degree of micro-
scopic deformation on all length scales, nor the specu-
lative formula proposed by de Gennes [26, 27|, antici-
pates such wavenumber dependence for the anisotropic
structural relaxation. For example, the phenomenologi-
cal approach by de Gennes and Léger predicts that the
rate of anisotropy relaxation is independent of @) [26]. To
lend support to our experimental observation, we carried
out complementary non-equilibrium molecular dynamics
(MD) simulations of the step-strain experiments based on
the coarse-grained bead-spring model for polymer melts
[28, 29]. All beads interact with the WCA potential and
the bonded interactions between neighboring beads along
the polymer chain are described by the FENE poten-
tial. Three different chain lengths, N = 120, 500, and
2000, were simulated at p = 0.85 and 7" = 1 to mirror

the PS30K, PS100K, and PS500K samples, respectively.
To simulate the step-strain relaxation experiment, the
equilibrated polymer melt is uniaxially elongated in the
z-direction with a constant engineering strain rate to a
stretching ratio of A = 1.8 and the equilibrium pressure of
the melt is imposed in the z- and y-directions via a Nosé-
Hoover barostat. After the step deformation, MD simu-
lations with a Langevin thermstat are performed to study
the relaxation behavior. The details of the simulations
are described in the Supplemental Material [30]. Figures
3(d), 3(e) and 3(f) show that the MD simulations produce
qualitatively similar behavior for the anisotropic struc-
tural relaxation function ¢9(Q;t), which further confirms
the experimental results.

It is intriguing to ask whether the classical Rouse [39)
and tube models [40-42] can offer some insights into the
observed spatiotemporal dependence of anisotropy relax-
ation. Before embarking on the theoretical analysis, we
point out a striking feature of the relaxation behavior of
#9(Q;t), observed in both the SANS experiments and
MD simulations. In the case of quasi-elastic neutron
scattering, the so-called Rouse scaling approach, which
stems from de Gennes’ derivation of the dynamic struc-
ture (form) factors of the Rouse model [1, 3, 53], has
been fruitful in elucidating the slow dynamics of polymer
melts. In particular, it has been shown that for R,Q) > 1
and t < Tg, the coherent intermediate scattering function
Feon(Q,t) can be described as a function of the scaling
variable (T't)'/2 where the decay rate T' o< Q*. Therefore,
Feon(Q, t) measured at different @) and ¢ can be collapsed
by plotting Fion(Q,t) against the Rouse variable (I't)'/2
[53]. Interestingly, we find that the anisotropic struc-
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FIG. 4. In[¢3(Q;t)] as a function of the scaling variable

(RyQ)Y*(t/7r)"/?. (a) Scaling analysis for the experimen-
tal data. Inset of (a) shows In[¢3(Q;t)] as a function of
(R,Q)Y2(t/7)Y?, where 7 is the longest viscoelastic relax-
ation time of the sample. (b)-(d): Scaling analysis of the
theoretical and simulation results.

tural relaxation functions ¢9(Q;t) at different Qs can be
reduced to a single curve by using (R,Q)"/?(t/7r)"/? as
the scaling variable [Fig. 4(a)]. In other words, Fig.
4(a) indicates that ¢9(Q;t) can be cast into the following
functional form:

S3(@:t)

50(Q:0) = ¢3(Q;t) ~ exp {—(Ft)l/ﬂ ) (4)

with I' &« Q. Furthermore, it appears that the data from
the three systems can be further superimposed onto a
master curve by normalizing the time ¢ with the longest
viscoelastic relaxation time 7 [inset of Fig. 4(a)]. Sim-
ilar to the case of quasi-elastic neutron scattering, the
above scaling approach is only valid under roughly the
condition of R,Q) > 1 and t < 7. Lastly, the experimen-
tally observed scaling behavior is corroborated by the
non-equilibrium MD simulations [Figs. 4(b), 4(c), and
4(d)].

To put these results in perspective, we evaluate the
anisotropic structural relaxation function ¢9(Q;t) using
the Rouse model for the unentangled system and the tube
model by Graham et al. [42], i.e. the GLaMM model,
for the entangled polymers [43]. The GLaMM model is
sovled with the standard parameters in the literature [42].
The comparisons between the theories and simulations
are presented in Figs. 3(d), 3(e), 3(f), 4(b), 4(c), and
4(d). At first glance, the Rouse model seems to be able
to provide a reasonable description of the spatiotempo-
eral dependence of anisotropy relaxation for short chains
[Figs. 3(a) and 3(d)]. However, a closer inspection re-
veals that the model does not faithfully reproduce the
aforementioned scaling for ¢9(Q;t) [Fig. 4(b)]. Addi-
tionally, it should be noted that for the entangled chains,
the scaling behavior persists well beyond the Rouse relax-
ation time. The observed scaling behavior for anisotropy
relaxation, therefore, does not arise from the uncon-
strained Rouse motion. It is worth mentioning that de-
viation from the standard Rouse behavior has been ob-
served in neutron spin-echo experiments on an unentan-
gled polyethylene melt in the equilibrium state [53, 54]
and is attributed to non-Gaussian dynamics. The possi-
ble connection between these phenomena remains to be
explored.

Figures 3(b), 3(c), 3(e), 3(f), 4(c), and 4(d) indicate
that the tube model also fails to predict the correct spa-
tiotemporal dependence for anisotropy relaxation, even
with the consideration of local fluctuations about the
primitive path [43, 55]. We previously showed that the
chain retraction mechanism of the tube model leads to
an increase of S9(Q;t) around the Rouse time in the in-
termedate ) range after a large step uniaxial deforma-
tion, which is inconsistent with both the SANS experi-
ment [12] and the MD simulation [29]. Not surprisingly,
quantitative analysis of ¢9(Q;t) reveals a strong devia-
tion from the theoretical prediction for the well-entangled
systems (PS500K and the N = 2000 chain in simulation).
The upturn of the theoretical ¢3(Q;) at intermediate Q
and ¢t < 7 is caused by the chain retraction mechanism
[12]. The effect of chain retraction is less pronounced for
mildly entangled polymers [29]. Nevertheless, the theory
disagrees with both the experiment [Fig. 4(a)] and the
simulation [Fig. 4(c)].

The most surprising aspect of our result is that en-
tanglement appears to have a very weak direct influence



on the microscopic mechanism of single-chain anisotropy
relaxation: the same peculiar behavior is observed for
both entangled and unentangled systems. Furthermore,
for the well-entangled systems, the scaling law holds well
both below (aQ > 1) and above (aQ < 1) the length
scale of the tube diameter a. The effect of entanglement
shows up only indirectly through the scaling variable 7
[inset of Fig. 4(a)]. This observation suggests a possible
simple explanation for the absence of “chain retraction”
in the previous step-strain relaxation experiments [12]
and molecular dynamics simulations [29]: if the confine-
ment effect of the tube on the test chain is weak, then the
molecular relaxation on the time scale of the Rouse time
will not produce the unique conformation predicted by
the chain retraction mechanism of the tube model [41].

In summary, we present the first quantitative analy-
sis of the spatial and temporal dependence of anisotropy
relaxation in deformed polymers by using small-angle
neutron scattering and non-equilibrium molecular dy-
namics simulations. We show that the relaxation of
the anisotropic structure of uniaxially stretched entan-
gled and unentangled polymer melts can be described
by a simple, universal scaling law, with the relaxation
rate proportional to the magnitude of the momentum
transfer. This unexpected finding presents a challenge to
our current theoretical understanding of the rheological
behavior of polymers: the observed scaling behavior of
anisotropy relaxation cannot be explained by the clas-
sical Rouse and tube models. This work highlights the
importance of studying the spatiotemporal dependence
of molecular motion under deformation and flow — an
aspect that has been overlooked in traditional polymer
rheology.
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