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In this letter we report a demonstration of electron ghost imaging. A digital micromirror device
directly modulates the photocathode drive laser to control the transverse distribution of a relativistic
electron beam incident on a sample. Correlating the structured illumination pattern to the total
sample transmission then retrieves the target image, avoiding need for a pixelated detector. In our
example, we use a compressed sensing framework to improve the reconstruction quality and reduce
the number of shots compared to raster scanning a small beam across the target. Compressed
electron ghost imaging can reduce both acquisition time and sample damage in experiments for
which spatially resolved detectors are unavailable (e.g. spectroscopy) or in which the experimental
architecture precludes full frame direct imaging.

Classical ghost imaging (GI) (e.g. [1]) is a method to
extract spatially-resolved sample characteristics from sin-
gle pixel detectors. Classical GI (also known as the “sin-
gle pixel camera” in computational imaging, see e.g. [2])
reconstructs a sample’s spatial properties by correlating
the measured structured transverse distribution of the
illuminating beam to a “bucket” (single pixel) measure-
ment of the sample response. This imaging modality is
especially useful when pixelated detectors are unavail-
able or the experimental architecture precludes full frame
imaging. In recent years GI has been applied to a grow-
ing range of illumination types, including both x-rays
[3–5] and atoms [6]. Despite theoretical studies [7, 8], to
date there have been no experimental demonstrations of
electron ghost imaging.

Potential benefits of applying ghost imaging methods
to electron-based imaging systems include the possibil-
ity to minimize image acquisition time and to reduce the
dose delivered to the sample and the resulting sample
damage [9, 10]. In addition, electron ghost imaging can
be useful for experimental methods (e.g. electron energy-
loss spectroscopy [11], or cathodoluminescence [12]) for
which spatially resolved detectors either do not exist or
severely increase the complexity of the setup. A spe-
cial case is the growing field of time-resolved electron
scattering where the use of multi-MeV, ultrashort rela-
tivistic electron sources for both imaging and diffraction
has pushed temporal resolution to the ps and fs regimes
[13–15]. Employing structured illumination (i.e. ghost
imaging) schemes on ultrashort electron beams offers the
possibility to better manage the space charge effects in
the electron column.

Conventional GI splits the illumination in two paths to
allow for the measurement of the transverse profile while
only a fraction of the main beam (the “ghost”) samples
the target. Even though very low energy electron beam
splitters are being developed [16, 17], at energies com-
monly employed in electron scattering instruments (> 10
keV) there is no practical solution for splitting the beam
and upstream measurements of the transverse beam pro-

file would affect the distribution incident on the sample.
Fortunately, a variation of GI known as computational
ghost imaging [18] avoids the need for direct measure-
ment by explicitly controlling the distribution of the in-
cident illumination. For example, in [18] a spatial light
modulator was employed to pattern the wavefront, and
this known pattern was correlated to the bucket detector
without any additional measurement. Similar control is
possible with electrons; modulating the shape of a pho-
tocathode drive laser controls the emitted electron beam
[19, 20], enabling computational GI with electrons. Us-
ing a relativistic multi-MeV electron beam has the signif-
icant advantage of reducing space charge effects, improv-
ing preservation of the electron beam structure during
transport from the cathode to the sample.

In this letter, we report an experimental demonstration
of computational electron GI using a high-brightness rel-
ativistic electron beam (3.2 MeV) from a radiofrequency
(RF) photoinjector. In our proof-of-principle, we repro-
duce a target image by correlating the total electron
transmission through the sample with the programmed
patterns of a digital micromirror device (DMD). In the
reconstruction we use compressed sensing [21, 22] to re-
duce the total number of shots, improving speed of ac-
quisition and reducing sample exposure. (See e.g. [23]
for other applications of compressed sensing to scanning
electron microscopy.) The considerable freedom in struc-
turing the transverse illumination profile, enabled by the
DMD, allows us to test and compare two different sets
of illumination patterns: raster scanning by turning on a
single DMD (macro)pixel at a time, compared to turning
on a randomized fraction (∼50 %) of the pixels for each
mask (multipixel, or MP).

The experiment was carried out at the UCLA Pegasus
beamline [24] where a 0.8 ps RMS 266 nm laser pulse illu-
minates a Cu cathode in the high field S-band 1.6 cell RF
gun to generate the electron beam. The initial electron
beam profile at the cathode can be controlled by applying
a mask to the transverse profile of the drive laser pulse.
For the shaping we used a TI DLP-7000 DMD, with a
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FIG. 1. Schematics of the ghost imaging experiment. An
ultrashort 266 nm laser pulse illuminates the DMD and is
then imaged onto the cathode. The generated electron beam
is imaged using the gun solenoid onto a target located 2.7 m
downstream. A single pixel bucket detector records the inten-
sity of the transmitted beam after the target. The reduced
intensity in the center of the electron profile is due to the
cathode’s nonuniform quantum efficiency.

modified window to allow ultraviolet (UV) transmission,
as discussed in [20]. An 80 cm focal length lens imaged
the DMD onto the cathode with demagnification factor
0.2 (Fig. 1), and an 1800 lines/mm diffraction grating
compensated the pulse front tilt introduced by the mirror
array. A 5 mm laser spot on the DMD fully illuminated
a region of 160 × 160 pixels on the array. To reduce
the experimental complexity, we defined “macropixels”
made of 8× 8 or 16× 16 squares of physical DMD pixels.
The input UV laser energy was limited to < 10 µJ to
avoid DMD damage [25]. Due to significant losses on the
grating, DMD, and transport line, less than 5% of the
input UV energy reached the cathode. The maximum
charge per pulse used in the experiment was 250 fC. A
virtual cathode camera monitored the laser profile, and a
remotely controlled lens translation stage fine-tuned the
imaging condition.

After the RF gun [26], the 3.2 MeV kinetic energy elec-
tron beam was focused using a 1.9 kG field solenoid lens
(effective length 20 cm) located 29 cm downstream of the
cathode and imaged to a 4 mm diameter spot (magnifi-
cation = 4) on the target plane, at a distance of 2.7 m
from the cathode. Even for the very low peak currents
(< 1 Amp) and charge densities (< 0.1 pC/mm2) used in
this experiment, space charge had non-negligible effect on
the beam dynamics, and in particle tracking simulations
it is observed to contribute to the resolution limit in the
electron imaging system, with the other main effects be-
ing the chromatic aberrations of RF and solenoid fields
(Fig. 2). For the conditions of the experiment, it was
found (in agreement with the simulations) that features
on the cathode of less than 100 µm size were significantly
blurred at the target plane. No attempts were made in
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FIG. 2. Evolution of beam energy and rms spot size along
the beamline. The longitudinal component of the magnetic
field of the solenoid lens is also shown. The “UCLA” shape
impressed by the DMD on the photoemission laser pulse (b)
is imaged with a rotation angle determined by the solenoid
(c). This angle is taken into account in the reconstruction
analysis.

trying to improve the spatial resolution, as it was not
the goal of these first experiments. Nevertheless, we note
that a multi-lens electron imaging system could be used
to demagnify the cathode transverse profile by large fac-
tors to improve the spatial resolution of the technique.

A fluorescent screen (13 cm downstream, DRZTM), im-
aged with a standard CCD camera, was placed at the tar-
get plane to measure the electron transport and imaging
condition. The transport was assumed to stay constant
throughout the experiment and was measured only once
prior to inserting the target.

After inserting a target, Fig. 3, into the beam, the
transmitted electrons were collected on the DRZ screen,
directly behind the target. In post analysis of each DRZ
image, we remove all background and select only the
photo-emitted electron beam region. Finally, integrat-
ing the signal over the selected region on the DRZ screen
yields the single-pixel “bucket-detector.” Two main sets
of DMD configurations were recorded: a multipixel ran-
dom set in which each of the DMD macropixels (either
8 × 8 or 16 × 16 actual pixels) was turned on with 50%
probability and a raster set in which only one macropixel
(16×16 actual pixels) of the DMD was turned on for each
pattern.

Early GI experiments reconstructed the target image
via a direct correlation of the incident pattern and bucket
detector. However, it is also possible to pose GI as an
image formation problem and make use of well estab-
lished optimization methods, such as compressed sensing
[21, 22]. The measurement can be written as a dot prod-
uct,

b(i) =
∑
m,n

A(i)
mnxmn (1)

where xmn is the unknown (two-dimensional) sample im-

age, whileA
(i)
mn is the ith pattern applied to the DMD, b(i)
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FIG. 3. From left to right, we show an optical photo of the target, the constructed ground truth electron transmission image,
the best reconstruction from the MP data set, a 10 × 10 raster scan interpolated to 20 × 20 pixels, and a 10 × 10 raster scan
solved with Eq. 2 on a 20 × 20 grid. Note that the ground truth is the product of the object transmission and cathode QE.

is the summed intensity on the bucket detector for pat-
tern i, and m,n are the indices of the sample image and
DMD macropixels. Note that in practice, xmn will repre-
sent the ground truth combined with machine systemat-
ics, such as the cathode quantum efficiency (QE). With
Np = m × n macropixels on the DMD and combining

data from Ns shots, we can reshape A
(i)
mn into a Ns×Np

matrix A, xmn into a Np long vector x, and b(i) into a
Ns long vector b. In our example, each “bucket” mea-
surement b(i) is a scalar, but the same formalism works
for more general measurements, e.g. a lineout from a
spectrometer.

To solve Eq. 1 for x, we use the alternating direction
method of multipliers (ADMM), a standard convex op-
timization tool used in image reconstruction that allows
the flexibility of including prior knowledge of the phys-
ical system into the solution [27]. To apply ADMM to
the electron GI experiment, we add priors to Eq. 1, and
rewrite as a constrained optimization problem,

minimize
x

1

2
||Ax− b||22 + λ1||z1||1+

Ind+(z2) + λ2||z3||22

subject to Kx− z = 0,K =

I
I
L

 , z =

z1
z2
z3

 .

(2)

Besides the quadratic term which minimizes the differ-
ence between the reconstruction and the measurement,
we consider three priors based on the sample type: spar-
sity to favor large areas of background, non-negativity to
ensure non-negative sample transmission, and smooth-
ness to favor round edges and remove speckles. These
constraints are included in the minimization problem us-
ing the auxiliary (slack) variables z1−3. The Laplacian
operator L implementing the finite difference approx-
imation of the second derivative enforces smoothness.
The indicator function Ind+ is infinite when the argu-
ment is negative and ||y||1 and ||y||2 represent the L1
and L2 norms of vector y. The ADMM implementa-
tion alternatively treats each of the (x, z1−3) variables
as the only independent variable while keeping the others

fixed, which iteratively approaches a solution satisfying
the stated constraints.

The hyper-parameters λ1,2 in Eq. 2 determine the
relative weight of the corresponding priors. To choose
hyper-parameters, we conduct a simulation by applying
the macropixel size, experimentally measured noise level,
cathode QE map, and beam jitter to a ring pattern with
similar diameter and thickness as the physical target. Af-
ter optimizing hyper-parameters with the simulation, we
keep parameters fixed for analysis of experimental data.

We collected data sets with two different DMD pat-
terns: raster and multipixel (MP) random masks. The
raster data set consists of 100 patterns, with a single
macropixel in a 10× 10 grid turned on for each pattern.
(Each macropixel consists of 16×16 physical pixels on the
DMD.) The two MP data sets consist of 400 distinct pat-
terns (for a 20×20 grid with 8×8 pixels per macropixel)
and 326 patterns (for a 10 × 10 grid with 16 × 16 pix-
els per macropixels). For each MP pattern, macropix-
els were masked independently with a 50% probability,
equivalent to a random Bernoulli matrix with p = 0.5.
To improve signal-to-noise, for each pattern we averaged
multiple shots (5 for MP, 10 for raster) to generate the
bucket value.

To create the ground truth image, we record a DRZ
detector image of the sample with all DMD pixels turned
on. We then rotate the DRZ image to compensate for the
solenoid rotation (Fig. 2). The resulting image represents
an electron transmission image of the sample, scaled by
the cathode QE. (Note that space charge effects will blur
small QE features.) This is the same measurement we
expect to reconstruct with the ghost imaging analysis.
We assess the quality of the reconstruction with the mean
squared error (MSE),

MSE =
1

MN

M∑
m=1

N∑
n=1

(
Tmn − xmn

)2

, (3)

where Tmn is the ground truth, and xmn is the recon-
structed two dimensional sample image. The smoothness
prior alone is able to reduce MSE by 27% and 21% for
MP 20 × 20 and MP 10 × 10. Just as for the MP data
set, we can apply Eq. 2 to the rastered data set to in-
clude priors in the solution; for example, applying the
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FIG. 4. Reconstruction results for the MP 20×20 data sets
with compression factor being 4, 2, and 1.
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FIG. 5. Simulation of MP and RR reconstruction for a
100 × 100 image. Left: ground truth image. Middle: MP,
SNR = 200, compression factor of 50, MSE = 0.02. Right:
RR, SNR = 200, compression factor of 2, MSE = 0.02. The
reconstructions are zoomed in to present a clearer view of the
reconstruction quality. The MSE is calculated in a 30×30
pixel region centered around the sample.

smoothness prior reduces MSE by 21%. Figure 3 shows
the ground truth image and the best reconstructions from
the different methods.

To assess the impact of compressed sensing on the
data acquisition rate, we performed reconstructions with
increasingly smaller subsets of the total dataset. The
compression factor is defined as the total number of
macropixels divided by the number of patterns used for
reconstruction. With this definition, a full raster scan
has compression factor of 1. We run the reconstruction
for the 20× 20 MP data set with compression factors of
1, 2, and 4. The results are given in Fig. 4.

In our simple proof-of-principle, Fig. 3 shows that
both MP and rastering can reproduce the sample shape.
Given that rastering can be accomplished by focusing
and sweeping the beam, it is interesting to ask whether
the DMD is necessary. In general, the choice between
MP and rastering for future experiments will depend on
the experimental conditions and sample type. In MP, the
beam charge is spread across multiple macropixels, while
in rastering only a single macropixel is illuminated per
shot, so if charge density is the same, each MP shot re-
sults in higher dose to the sample. Consequently, for ex-
periments limited by sample damage and with good SNR,
rastering may be preferable to MP. Conversely, when ac-
quisition time is important, MP can resolve a target with
relatively few and small features with higher compression
factor, resulting in faster acquisition time than rastering.

To illustrate the trade-off, we simulate an experiment

using both rastering and MP to reconstruct a sparse sam-
ple while minimizing either acquisition time or sample
damage. For a fair comparison, we introduce a “random-
raster” (RR) data set, which is a random subset of the
patterns in the full raster scan: this allows for compressed
sensing in both cases. The simulated target is a small
ring with 5 unit radius and 1 unit width on a 100× 100
unit grid. In total, just 28 out of 104 points are non-
zero. We find MP reconstructs a reasonable image with
just 200 shots (compression factor of 50), while RR re-
quires 5000 shots (compression factor of 2) to reach the
same MSE (Fig. 5). However, by illuminating only a
single macropixel per shot, the RR approach has a 4-
fold lower cumulative dose. (This includes a 50-fold in-
crease in charge density for the RR case to achieve the
same SNR, defined as the ratio of fluctuations in signal
to fluctuations in noise at the bucket detector). We note
that the relative benefits of the two methods will in gen-
eral depend on experimental constraints, noise sources,
sample type, available priors, and even error metric, and
should be evaluated on a case-by-case basis. Moreover,
the DMD provides the flexibility for a wide range of il-
lumination schemes, e.g. using an arbitrary fraction of
macropixels or partial illumination of each macropixel.

This letter reports an experimental demonstration of
GI with multi-MeV relativistic electrons. By controlling
the electron profile with a DMD in the injector laser path,
we reconstruct the sample without measuring the inci-
dent beam of each exposure. GI has diverse applications
in experiments for which pixelated detectors do not exist
(e.g. spectroscopy or cathodoluminescence), or in which
the geometry does not permit imaging of the sample. We
use the compressed sensing formalism, which reduces ac-
quisition time and risk of sample damage by imposing
priors on the reconstruction. While our demonstration
used random DMD patterns, the flexibility of the DMD
in principle allows the user to select patterns “on-the-
fly” to optimally converge to a solution or to tailor the
patterns to specific sample priors, further improving the
acquisition time and reducing damage.

The ability to impose arbitrary shapes on the electron
beam may also enable related imaging methods, for ex-
ample structured [28] or adaptive [29] illumination. Pat-
terning the beam in momentum space with optics be-
tween the photocathode and the sample could enable
Fourier ptychography [30]. Although we used MeV elec-
trons, lower energies are possible if the charge density is
low enough to avoid distortion from space charge. Fi-
nally, computational GI is in principle applicable to all
laser-driven particle sources by patterning the drive or
photoionizing laser, with examples including laser-based
plasma sources [31], cold electron and ion sources [32, 33],
laser-driven neutron sources [34], and even laser driven
photon sources such as high-harmonic generation [35] and
inverse Compton scattering [36]. In each case, practical
implementations will depend on the ability to image the
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