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The methods that add dispersion energies to interaction energies computed using density func-
tional theory (DFT), known as DFT+D methods, taper off the dispersion energies at distances
near van der Waals minima and smaller based on an assumption that DFT starts to reproduce the
dispersion energies there. We show that this assumption is not correct as the alleged contribution
behaves unphysically and originates to a large extent from non-exchange-correlation terms. Thus,
dispersion functions correct DFT in this region for deficiencies unrelated to dispersion interactions.

In the standard Kohn-Sham (KS) implementation of
density functional theory (DFT), all electron correla-
tion effects are included in the exchange-correlation en-
ergy. The existing semilocal functionals fail to describe
interactions which involve regions separated by several
angstroms or more due to problems with long-range cor-
relations of electronic motion [1]. The semilocal gen-
eralized gradient approximations (GGA’s) cannot de-
scribe such correlations due to the limited range of the
exchange-correlation hole, of the order of 1 Å [2]. One
can say that these methods are myopic with the range of
vision of about 1 Å. An important question is at what
separations inter-region correlation effects are (partly)
reproduced by GGA’s. Since dispersion interactions re-
sult from long-range electron correlations and can be pre-
cisely defined as functions of intermolecular separations,
R, these interactions provide an excellent case study to
answer this question.

Figure 1. Performance of various DFT methods for Ar2:
B3LYP [3], SCAN [4], TPSS [5], PBE0 [6, 7], PBE [6],
rPW86-PBE [6, 8] as used in Ref. [9], PW91 [10–12], revPBE-
PW92 [11, 13] as used in Ref. [14], and LDA in the Perdew-
Wang parametrization [11]. CCSD(T), SAPT, and HF in-
teraction energies are also shown, as well as the dispersion
energy, Edispx. For details of calculations, see Supplemental
Material (SM) [15] which includes Refs. [16–41].

As an example, consider the interaction energy of
Ar2, shown in Fig. 1, calculated using various DFT
methods, as well as the Hartree-Fock (HF) method and
symmetry-adapted perturbation theory (SAPT) [28–31].
The benchmark interaction energies are from the cou-
pled cluster method with single, double, and nonitera-
tive triple excitations [CCSD(T)]. We have also plotted
the dispersion energy
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exch−disp) are the ith-order SAPT disper-

sion (exchange-dispersion) energies. These results, as
well all other results here, were obtained with extrapola-
tions to the complete basis set limit. All DFT methods
included in Fig. 1 fail to recover the interaction energy
essentially at all separations, most prominently in the
asymptotic region where they decay too fast (exponen-
tially rather than as an inverse power of R), which clearly
can be attributed to the missing dispersion energy. For
R roughly in the range 3-5 Å, most DFT interaction en-
ergies still differ dramatically from accurate values, but
in a few cases the predictions are reasonable. The lat-
ter is sometimes interpreted as a partial recovery of the
dispersion interactions [42–45], although the size of the
exchange-correlation hole is still small compared to this
range of R’s. Finally, for R smaller than about 3 Å, DFT
interaction energies start to agree with the benchmark.
However, this is mainly because Edispx becomes a small
fraction of the total interaction energy, only 12% in mag-
nitude at R = 1.5 Å.

Most methods displayed in Fig. 1 can be brought to
agreement with CCSD(T) by adding a negative correc-
tion, which, at very large R, is simply the dispersion
energy. At shorter R, the dispersion energy has to be
tapered, differently for each DFT method. This obser-
vation led to a family of methods supplementing DFT
interaction energies by a “dispersion” correction referred
to as DFT+D type methods [42–49]. These methods be-
came enormously popular and perform reasonably well,
see, e.g., Ref. [39] showing that some DFT+D methods
reproduce benchmark interaction energy curves with a
median unsigned percentage error of only 4-5%. Only
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Figure 2. The dispersion corrections D3BJ [multiplied by R6]
for Ar2 corresponding to various DFT functionals compared

to E
(2)
disp + E

(2)
exch−disp and to the dispersion energy from the

asymptotic expansion, E
(2)
disp,as. The latter quantities were

computed using SAPT(DFT) to be at the same level of theory
as D3, see SM [15] which includes Refs. [56–63] .

SAPT based on DFT [SAPT(DFT)][50, 51] performed
better, with an error of 2%.

In DFT+D, to taper the magnitude of dispersion en-
ergy in the region of van der Waals (vdW) minimum
and at smaller R, one uses switching functions fitted to
the total interaction energies computed using accurate
wave function methods on a set of dimers. They are
called in literature “damping functions”, but are substan-
tially different from the conventional damping functions
used to account for the charge-overlap effects neglected
in the asymptotic expansions [30, 52–55]. This is shown
in Fig. 2 on an example of a popular dispersion correc-
tion, called D3BJ [44, 49, 64]. The correction without
switching is shown as D3(no-switching). The changes of
D3(no-switching) values due to switching are quite sig-
nificant at all R. For example, D3BJ(PBE) is reduced
in magnitude by a factor of almost 2 at the vdW mini-
mum, RvdW = 3.76 Å, as compared to D3(no-switching).
This reduction is strikingly different from the physical

damping of the asymptotic dispersion energy, E
(2)
disp,as,

as shown by the ratio of this quantity to E
(2)
disp amount-

ing to about 1.06. The D3BJ switching is also too large
to account for the exchange-dispersion effects, included

in the curve E
(2)
disp + E

(2)
exch−disp. This curve defines an

upper limit for the physical damping of the asymptotic
expansion, the damping which accounts for the exchange
and charge-overlap effects and thus removes the singular-
ities of 1/Rn terms. The significant additional amount
of damping displayed by the D3BJ curves is therefore
unphysical. One may notice that for R > 4 Å, several
dispersion functions, in particular D3BJ(revPBE), are

Figure 3. Ratio of DFT interaction energies and Edispx to
CCSD(T) interaction energy for the Ar − Li+ complex.

“antidamped”. This is an artifact of D3BJ, for explana-
tions see SM [15] which includes Refs. [44, 49, 64].

The standard explanation for the extent of switching
off of asymptotic dispersion energies in DFT+D is that
this has to be done to avoid double counting since DFT
methods start to recover dispersion effects at small R [42–
45], i.e., the conjecture of such recovery is fundamental in
the construction of DFT+D. It implicitly assumes that
errors of DFT result almost exclusively from the disper-
sion component which is certainaly true for large R in
dispersion-dominated dimers where the DFT interaction
energy is exponentially small. However, at smaller sepa-
rations, the errors not related to dispersion can be large.
To demonstrate this behavior, we show in Fig. 3 the ra-
tio of interaction energies from different DFT methods
to the CCSD(T) interaction energies as well as the ra-

tio Edispx/E
CCSD(T)
int for Ar–Li+. Surprisingly, all DFT

methods overestimate the magnitude of interaction en-
ergy by about 10-25% at RvdW (2.4 Å) where the dis-

persion energy amounts to only 5% of E
CCSD(T)
int . Thus,

if one accepts the hypothesis that DFT approximations
recover a part of the dispersion energy near RvdW, for Ar–
Li+, they recover 200-500% of this quantity. This does
not appear reasonable and, therefore, the only option is
to attribute these errors to the dispersionless component
of the DFT interaction energy. In SM [15], similar results
are shown for Ar-proton. Although there is no dispersion
energy involved in this case, DFT interaction energies
have significant negative errors at almost all separations
included.

To further analyze the issue, let us divide the exact in-
teraction energy into the dispersion contribution and the
remainder, which we will call the dispersionless interac-
tion energy

Edl = E
CCSD(T)
int − Edispx. (2)

Edl does not contain any of the intermonomer electron
correlation effects as these are, by definition, included in
Edispx. However, it still contains some intramonomer cor-
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Figure 4. Comparison of Eextra/Edispx for Ar2.

relation effects on interaction energies. Another quantity,
Eextra, is defined as

Eextra = EDFT
int − Edl. (3)

Thus, Eextra represents the dispersion energy recovered
by a given DFT functional, if any, as well as errors of DFT
approximations unrelated to dispersion energies. The ra-
tio Eextra/Edispx for Ar2 is plotted in Fig. 4. The follow-
ing observations can be made: (a) The ratio is tiny in
the asymptotic region for all methods; (b) While there
is a considerable spread in the values of this ratio near
RvdW, the values are again very close to each other for
the shortest separations shown (except for HF, LDA and
dlDF [65]); (c) The ratio Eextra/Edispx reaches the value
of 1 near R = 2 Å for most methods, but does not
remain constant and continues to increase further for
shorter separations (for the special case of SCAN, see
SM which includes Refs. [66, 67]). Thus, all functionals
give Eextra larger in magnitude than Edispx at these R’s,
which means these methods need a positive “dispersion”
correction in this region. This behavior is a strong in-
dicator that DFT approximations do not reproduce dis-
persion energies at the separations included in Fig. 4. If
the dispersion energies were reproduced for the right rea-
sons, i.e., because the exchange-correlation holes start to
overlap, the behavior should be as shown in the inset of
Fig. 4; (d) For B3LYP and revPBE-PW92, the ratio is
negative in some regions, which means that the corre-
sponding correction should be larger than the true dis-
persion energy; (e) Almost all DFT methods “recover” a
significant portion of the dispersion energy at separations
somewhat larger than RvdW which is well beyond the re-
gion where any overlap of exchange-correlation holes is
possible; (f) An interesting example is provided by the
HF curve since, by definition, the HF method cannot
give any dispersion energy. Yet, EHF

int is not equal to Edl

since the HF method also neglects intramonomer corre-
lation effects in interaction energies. One may wrongly
think that the HF method reproduces about 23% of the
dispersion energy at 1.5 Å. Clearly, all these findings in-
dicate that Eextra given by the DFT methods included
in Fig. 4 cannot be considered to represent the disper-
sion energy. In contrast, Fig. 3 of SM shows that Eextra

computed using wave-function methods is approximately
constant with R.

To get insights into the origin of Eextra, we plot in
Fig. 5 the ratios Eextra/Edispx, ∆Ec/Edispx, ∆Ex/Edispx,
and ∆Exc/Edispx = (∆Ex + ∆Ec)/Edispx, where ∆Ex

(∆Ec) is the contribution of the exchange (correlation)
energy to the interaction energy and is obtained by sub-
tracting the sum of exchange (correlation) energies of
monomers from the dimer exchange (correlation) energy
(exact exchange is not included in ∆Ex). One may as-
sume that if any component of DFT reproduces the dis-
persion energy, it should be mainly ∆Ec, but ∆Ex can
also contribute [68, 69]. Let us discuss these ratios for
the SCAN functional. The behavior of ∆Ec is reason-
ably physical as the ratio ∆Ec/Edispx increases gradually
with the decrease of R from zero to about 1 near R = 2.5
Å (but then starts to decrease). However, ∆Ec/Edispx is
in general different from Eextra/Edispx by up to a factor
of 2. Thus, effects other than correlation are equally im-
portant. In contrast to ∆Ec/Edispx, ∆Ex/Edispx changes
rapidly with R, ranging from -1 to 3.5, the behavior
clearly rooted in LDA. The negative sign for separations
somewhat larger than Rvdw, i.e., positive ∆Ex, means
that the notion that ∆Ex could contribute to dispersion
energy for such R is not true for SCAN as the dispersion
energy is, by definition, a negative quantity. Further-
more, in the region where ∆Ex is positive, ∆Ec is almost
zero, but Eextra/Edispx reaches values as high as 0.5. This
means that the non-exchange-correlation (non-xc) com-
ponents of Eextra “reproduce” dispersion. For other func-
tionals in Fig. 5, the relations are generally more chaotic
and in particular ∆Ec/Edispx and Eextra/Edispx are much
farther from each other than for SCAN. We believe the
important finding of this analysis is that it always re-
quires significant non-xc contributions to explain the dif-
ference between ∆Exc/Edispx and Eextra/Edispx. In SM,
which includes Refs. [70–72], we present similar results
for LRC-ωPBEh [70] and ωB97 [71], range-separated hy-
brid functionals, as well as analyze the non-xc contribu-
tions and the dependence on density.

Figure 6 shows Eextra/Edispx for Ar–HF and (H2O)2.
The results for Ar–HF are very similar to Ar2, but signif-
icant differences are seen for the water dimer, especially
at large R. This is because at these R’s the interaction
energy is dominated by the electrostatic component and
errors in this component (unavoidable since the dipole
moments given by the methods studied are a few percent
different from the CCSD(T) ones) could be several times
larger than Edispx, as the latter quantity amounts to only
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Figure 5. The ratios Eextra/Edispx, ∆Ex/Edispx, ∆Ec/Edispx, and ∆Exc/Edispx for the argon dimer.

Figure 6. The ratios Eextra/Edispx for Ar–HF and (H2O)2.

1% of Eint at R = 10 Å.

If semilocal DFT approximations do not recover Edispx

in the range of R’s relevant for intermolecular interac-
tions, the excessive damping in the dispersion corrections
in DFT+D methods is unwarranted, in particular since
one type of physical interaction (long-range electron cor-

relation) is used to fix errors in another type of interac-
tion (electrostatic, polarization and first-order exchange
that do not involve long-range correlations). One way
to go around this problem is to add the physical dis-
persion energy at all R’s to those DFT methods which
give interaction energies close to Edl, such as revPBE-
LDA or rPW86-PBE. These functionals were paired with
nonlocal density functionals in Refs. [14] and [9], respec-
tively. One may mention here that the exchange func-
tional rPW86 was parametrized in Ref. 8 to give in-
teraction energies similar to the HF ones, in order to
be applied with nonlocal density functionals. The fact
that nonlocal functionals typically do not include ex-
cessive damping supports our thesis that such damping
should be avoided. Another nearly dispersionless func-
tional is the APF functional of Ref. [73]. Possibly the
best choice is to use DFT methods optimized on Edl, such
as dlDF [65], since this part of the interaction energy con-
tains physical components not involving long-range elec-
tron correlations, so that a semilocal DFT should be able
to accurately recover Edl for good physical reasons. The
observations made in the present work may guide devel-
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opment of future DFT+D methods as well as of nonlocal
functionals.

In conclusion, we have shown that the claim that
semilocal DFT methods recover a significant portion of
dispersion energies at separations of vdW minima cannot
be defended. For dispersion-dominated dimers, numeri-
cal results might suggest otherwise since Eextra changes
from zero at R→∞ to a value close to Edispx at some R
somewhat smaller than RvdW. We show, however, that
Eextra does not have physical characteristics expected of
dispersion energy. A major failure is that after becoming
equal to Edispx, Eextra continues to increase in magnitude
as R decreases. Furthermore, Eextra originates only in a
small part from ∆Ec, whereas the major contributions
come from ∆Ex and the non-xc components of the func-
tionals. The non-xc terms should not reproduce disper-
sion energies (or any correlation effects), so this behav-
ior is unphysical. We also demonstrate that DFT gives
poor interaction energies even for systems with no or very
small dispersion interactions such as Ar–proton and Ar–
Li+. These observations show that DFT approximations
have severe accuracy problems other than their inability
to recover dispersion energies. Thus, our final conclusion
is that the success of DFT+D methods is mainly due to
cancellations of various errors in the exchange and non-xc
components by the dispersion functions, i.e., the results
are right mostly for wrong reasons.
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