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Electron motion in combined strong laser and Coulomb fields is central to laser-matter interac-
tions. By mapping this problem onto the motion of a guiding center, we derive a reduced model
which naturally embeds important Coulomb effects such as focusing and asymmetry, and clearly dis-
tinguishes direct versus rescattered electron ionization processes. We demonstrate the power of this
tool by unraveling the bifurcation in photoelectron momentum distributions seen in experiments.

Subjecting atoms or molecules to intense laser fields
gives rise to a variety of non-perturbative and highly
nonlinear phenomena, such as high-harmonic generation
(HHG), non-sequential multiple ionization (NSMI), and
high-order above-threshold ionization (ATI). All these
phenomena are based on the key mechanism of attosec-
ond physics, namely the recollision [1–6]. A recollision
is obtained when (i) an electron tunnel-ionizes, (ii) freely
travels in the laser field, and then upon return to the ionic
core, (iii) either recombines into an atomic or molecular
bound state, or undergoes inelastic or elastic scattering.
Ionized electron rescattering has broad applications in
atomic and molecular physics. For example, by experi-
encing a strong ion-electron interaction, rescattered elec-
trons probe the atomic or molecular structure. This is
the basis for imaging techniques, e.g., laser-induced elec-
tron diffraction [7–9] (LIED) for molecular imaging [10]
and photoelectron holography [11]. These techniques ex-
ploit the fact that photoelectron momentum distribu-
tions (PMDs) encode information on the structure of the
atom or molecule. Understanding the photoelectron dy-
namics and identifying the mechanisms responsible for
the shape of the PMDs are essential steps towards pre-
dicting and controlling [12] these strong-field phenomena.

As laser parameters are varied, the shape of the PMDs
undergoes drastic changes. To assess these qualitative
changes in experiments [13, 14], the location of the peaks
of the PMDs are followed as a function of the laser ellip-
ticity. For low ellipticity, the shape of the PMD is a single
cloud peaked at the origin, as a signature of Coulomb fo-
cusing [15, 16]. For larger ellipticities, the cloud splits
into two lobes as the Coulomb focusing recedes. Along
the major polarization axis, the lobes’ peaks are shifted
from the origin, which is a signature of Coulomb asym-
metry [17, 18]. The hypothesis made in Ref. [13] is that
there is a bifurcation when varying the ellipticity of the
laser field. This bifurcation translates into a bifurcation
in the ATI spectrum –that is, the energy distribution of
the ionized electrons–, as observed in Fig. 1a. When the
peak of the PMD is near the origin, the maximum of the
ATI spectrum is near zero energy. When the PMD splits
into two lobes, the energy at which the ATI is maximum
increases (mostly linearly) with increasing ellipticity.

Both classical [19] and quantum [20] simulations suc-
cessfully reproduce the PMDs observed experimentally.
However, the underlying dynamical mechanism leading

to the drastic changes of shape of these distributions
for varying ellipticities is an open question. Standard
and widely used methods for the interpretation of the
PMDs, like the strong-field approximation [1, 2] (SFA)
and the Coulomb-perturbed SFA [17], fail to predict
these changes at low ellipticities, in particular the bi-
furcation observed in Ref. [13]. The SFA neglects the
Coulomb field after tunnel-ionization so it cannot capture
the Coulomb asymmetry, and the perturbative treatment
of the SFA is not sufficient to capture well Coulomb fo-
cusing. Our objective in this Letter is to explain the
PMDs and their qualitative changes in terms of micro-
scopic mechanisms given by the electron dynamics as
laser parameters are varied, using a method which fully
takes into account the Coulomb field.

We begin by building a reduced classical model to de-
scribe the photoelectron motion in combined strong laser
and Coulomb fields. This reduced model reproduces the
PMDs, and clearly exhibits the bifurcation in question.
Analyzing this model in terms of its trajectories allows
us to uncover the mechanisms responsible for the bifurca-
tion. In a nutshell, we demonstrate that the bifurcation
of the ATI spectrum is a consequence of the depopula-
tion of the Rydberg states of the guiding center after a
critical ellipticity. The integrability of our reduced model
allows us to obtain an explicit expression for the critical
ellipticity as a function of the parameters of the laser and
the atom.

We consider an elliptically polarized electric field

E(t) = f(t)E0/
√

ξ2 + 1[cos(ωt)x̂ + ξ sin(ωt)ŷ], where
E0, ω, f and ξ are the field amplitude, frequency,
envelope and polarization, respectively. After tunnel-
ionization, the trajectory of the electron is obtained clas-
sically. The initial conditions of the electron (r0,p0)
are determined by t0 and p⊥, the ionization time and
the initial transverse velocity, respectively. The elec-
tron is initially at the outer edge of the potential bar-
rier, in the opposite direction of the electric field, i.e.,
r0 = −[IpE(t0)/2|E(t0)|2][1+(1−4|E(t0)|/I2p )1/2], where
Ip is the ionization potential of the atom. The initial lon-
gitudinal velocity of the electron is zero, i.e., p0 = p⊥n̂,
for a unit vector n̂ such that n̂·E(t0) = 0. In classical tra-
jectory Monte Carlo (CTMC) simulations, ensembles of
trajectories are integrated, with each one weighted by the
adiabatic ionization rate given by the Ammosov-Delone-
Krainov [21] (ADK) and the Delone-Krainov [22, 23]
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FIG. 1: (a) ATI spectrum as a function of ellipticity, com-
puted using CTMC from Hamiltonian (1). The color scale
indicates the probability distribution of photoelectron ener-
gies. The grey curve is the prediction of our model. (b) The
T-trajectory (see text) final momentum P = Pxx̂+ Pyŷ as a
function of the laser ellipticity. The solid colored curves and
circles are computed using our model and Hamiltonian (1),
respectively. The shaded area is where the T-trajectory is
rescattered in both our model and Hamiltonian (1). The solid
and dashed black curves are computed using the SFA and the
perturbed SFA, respectively (the lower curves correspond to
Px and the upper curves to Py). (c–d) The T-trajectory for
ξ = 0.25 (c) and ξ = 0.5 (d) shown for f = 1. The blue and
cyan solid curves are the T-trajectory of Hamiltonian (1) and
our model, respectively. The dashed cyan curve is the guiding-
center trajectory of the T-trajectory. The black crosses show
the initial position of the T-trajectory. Distances, momenta
and energies are scaled by E0/ω

2, E0/ω and Up, respectively.

(DK) theories, corresponding to the trajectory’s t0 and
p⊥. We discuss nonadiabatic effects (following Ref. [14])
in the Supplemental material [24]. The trajectory with
the highest weight corresponds to the trajectory initi-
ated with zero velocity (p⊥ = 0) at the peak of the
electric field, when the barrier width is the thinnest.
We refer to this trajectory as the T-trajectory. Here,
we take the ionization time of the T-trajectory to be
ωt0 = π. The final momentum of the T-trajectory is
denoted P = Pxx̂ + Pyŷ. We assume that when the T-
trajectory is not rescattered, the location of the peak of
the PMDs is at P.

In the SFA, the T-trajectory reaches the detector with-
out experiencing a recollision with the ionic core for all

laser polarizations, with a final momentum equal to its
initial drift momentum. In Fig. 1b, we show the fi-
nal momentum of the T-trajectory, which in the SFA is

PSFA = ŷ(E0/ω)ξ/
√

ξ2 + 1. The SFA solution does not
exhibit a bifurcation for increasing ellipticity, in contra-
diction with the ATI spectrum depicted in Fig. 1a and
the experimental results [13, 14].

In order to remedy this shortcoming, a Coulomb-
perturbed SFA [17] is used in Ref. [13]. The correc-
tion of the final electron momentum is given by ∆P =
−
∫

∞

t0
rSFA(t)/|rSFA(t)|3dt, where rSFA(t) is the SFA elec-

tron trajectory. In Fig. 1b, we see that the Coulomb-
corrected final momentum of the T-trajectory, i.e., P ≃
PSFA + ∆P, does not exhibit a bifurcation for increasing
ellipticity either, nor does it predict a change of dynami-
cal behavior of the T-trajectory. In addition, it was noted
in Ref. [13] that this method does not predict correctly
the location of the center of the PMDs for low elliptic-
ities both in Px and in Py. Hence, for low ellipticities
and this range of laser parameters, a perturbed SFA is
not the adapted framework for including the Coulomb
interaction in order to assess the PMDs.

Instead of perturbing the SFA, we consider here an
averaging method over a fast timescale to describe the
photoelectron dynamics. In the dipole approximation
formulated in length gauge, the dynamics of the elec-
tron interacting with an electric field and an ionic core is
governed by the Hamiltonian

H(r,p, t) =
|p|2

2
+ V (r) + r ·E(t), (1)

where atomic units (a.u.) are used unless stated oth-
erwise. Here, the atom is He (Ip = 0.9 a.u.), the field
wavelength is λ = 780 nm (ω = 0.0584 a.u.) and the
laser intensity is I = 8×1013 W · cm−2 (E0 = 0.048 a.u.).
The field envelope f consists of a two laser-cycle plateau
followed by a two laser-cycle linear ramp-down, unless
stated otherwise. The position of the electron is r, and
its canonically conjugate momentum is p. We use a soft
Coulomb potential [30] V (r) = −(|r|2+1)−1/2 to describe
the ion-electron interaction.

Averaging Hamiltonian (1) over the fast timescale, set
by the period of the laser field, using a canonical trans-
formation [24] reveals that the electron oscillates around
a trajectory which we refer to as the guiding-center tra-
jectory, as shown in the lower panels of Fig. 1c–d. At the
lowest order of the perturbative expansion, the electron
phase-space coordinates are of the form

r = rg + E(t)/ω2, (2a)

p = pg + A(t), (2b)

where (rg ,pg) are the canonically conjugate variables of
the guiding center, and A(t) is the vector potential. Here,
it is straightforward to see that pg is the electron drift-
momentum. The guiding-center dynamics is governed by
the averaged Hamiltonian

H̄(rg,pg) =
|pg|2

2
+ Veff(rg). (3)
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FIG. 2: Polar plots of the PADs for ξ = 0.25 (left panel) and
ξ = 0.5 (right panel) computed using CTMC. The computa-
tion from our model (cyan) is in agreement with the one from
Hamiltonian (1) (blue). Also shown are computations using
the SFA (solid black line) and the perturbed SFA (dashed
black line).

We notice that this Hamiltonian no longer depends on
time, as a result of averaging. Consequently, its energy
E = H̄(rg,pg) is conserved. At the lowest order in the
perturbative expansion, Veff(rg) = V (rg). Thus, the an-
gular momentum of the guiding center is also conserved,
and the system is integrable in the Liouville sense. At
higher order in the perturbative expansion, the effec-
tive potential corresponds to the first nontrivial order
of the Kramers-Henneberger potential [31], and depends
on the laser parameters. In this case, the angular mo-
mentum is no longer conserved, and as a consequence,
the averaged system is no longer integrable. Our re-
duced model is valid for all positive energies and when
ω ≫ ωg = (2|E|)3/2 for negative energy, where ωg is the
approximate frequency of the guiding-center trajectory,
provided the electron and the guiding center are outside
the ionic core region. Here, we focus on the lowest-order
model.

In our model, after tunnel-ionization, the electron is
driven by a guiding center. The initial conditions of the
guiding center of the electron are determined by substi-
tuting the initial conditions of the electron (r0,p0, t0) in
Eqs. (2). Then, the guiding-center dynamics is governed
by Hamiltonian (3). When the electric field is turned
off, the vector potential vanishes and the electron co-
ordinates, in particular the momenta, become the same
as that of the guiding center. Figure 2 shows photo-
electron angular distributions (PADs) computed using
CTMC methods from Hamiltonian (1), which is com-
pared with CTMC from the SFA, the perturbed SFA [17]
and our model. In the left panel, we observe excellent
agreement between the prediction of our model and the
full system before averaging. Moreover, since only direct
electrons, i.e., the ones that do not undergo rescattering,
reach the detector in our model, it becomes possible to
locate rescattered electron contributions in the full sys-
tem. For example, we observe two peaks around π/3 and
4π/3 in the CTMC curve that are absent in the PAD
of our model, corresponding to the rescattered electron

contribution. In the right panel, we observe that pre-
dictions of both the perturbed SFA and our model are
in agreement with the full system. The shift of the true
PADs compared to the SFA prediction is known as the
Coulomb asymmetry [17, 18]. In order to understand this
phenomenon from a dynamical point of view, as well as
the bifurcation in the ATI spectrum, we apply our model
to analyze the T-trajectory.

Figures 1c–d compare the T-trajectory computed from
Hamiltonian (1) and our model. The energy of the
guiding center of the T-trajectory is denoted ET . If
ET > 0 (Fig. 1d), the guiding-center trajectory is un-
bounded, and the T-trajectory reaches the detector with-
out recolliding, with final momentum P. However, the
T-trajectory is deflected due to the effective Coulomb in-
teraction in the averaged Hamiltonian (3). The Coulomb
asymmetry observed in Fig. 2 is the direct consequence
of this deviation. If ET < 0 (Fig. 1c), the guiding
center populates Rydberg states of Hamiltonian (3) af-
ter tunnel-ionization, i.e., the guiding-center trajectory
is bounded, and the electron must return to the ionic
core. During rescattering, the energy of the guiding cen-
ter jumps to another energy level [since the averaged
model (3) is not valid close to the ionic core], and then
could ionize if its energy is positive after rescattering. In
addition, we notice that if the field envelope lasts only
a few laser cycles, i.e., less than the period of the Ry-
dberg orbit, then the electron is captured in a Rydberg
state [32, 33].

The energy of the guiding center ET depends on the
laser parameters, and in particular on the field elliptic-
ity, through the change of initial coordinates (2). There
exists a critical polarization ξc such that ET (ξc) = 0. An
approximation of the critical ellipticity [24] is

ξc ≃
√

2ω2

E
3/2
0

(

1 + γ2/2
)−1/2

, (4)

where γ =
√

Ip/2Up is the Keldysh parameter [34]
and Up = E2

0/4ω2 is the ponderomotive energy. We
have assumed that V (rg) ≃ −1/|rg|, ξ2c ≪ 1, and

r0 ≃ x̂Ip
√

ξ2c + 1/E0. If ξ < ξc then ET < 0, and
the T-trajectory is rescattered. In our model, the ob-
servable P does not exist because the T-trajectory does
not reach the detector. If ξ > ξc then ET > 0, and
the T-trajectory reaches the detector without recollid-
ing. For I = 8 × 1013 W · cm−2, the critical field polar-
ization obtained from Eq. (4) is ξc ≃ 0.32, in agreement
with Fig. 1a. For I = 8 × 1014 W · cm−2, the critical
field polarization obtained from Eq. (4) is ξc ≃ 0.08,
in agreement with experimental measurements [13]. For
I = 1.2× 1014 W · cm−2, a wavelength of 790 nm and an
Ar atom, it is given by ξc ≃ 0.27, also in agreement with
experimental measurements [14]. We notice that the ad
hoc criterion used in Ref. [13] based on the perturbed
SFA theory [17] does not provide a correct estimate of ξc
for intensities smaller than 5 × 1014 W · cm−2.

The final momentum of the guiding center of the T-



4

FIG. 3: Scattering angle of the electron of Hamiltonian (1)
as a function of the initial conditions (t0, p⊥), for ξ = 0.25
(upper panel) and ξ = 0.5 (lower panel), for a field envelope f
with an eight laser-cycle plateau and a two laser-cycle ramp-
down. The final electron energy is negative in grey areas.
The black lines show where the guiding-center energy is E =
0 according to our model (3). The crosses show the initial
conditions of the T-trajectory. The dashed lines are the ADK
and DK probability levels normalized by the maximum. The
momentum p⊥ is in atomic units.

trajectory is P =
√

2ET (x̂ cos Θ + ŷ sin Θ) for ξ ≥ ξc,
where Θ is the scattering angle. Assuming that V (rg) ≃
−1/|rg|, the scattering angle is Θ = π/2 + sin−1(2ET ℓ2 +

1)−1/2, where ℓ is the guiding-center angular momen-
tum. Close to the bifurcation, the guiding-center energy
is ET ≃ 4Upξc(ξ − ξc), and we have

Px ≃ −
√

2ξc(E0/ω)(ξ − ξc)
1/2, (5a)

Py ≃ 2
√

2(E0/ω)(ξ − ξc). (5b)

We notice that the bifurcation is observed for both Px

and Py. Consequently, we show that Coulomb focusing
breaks down when Coulomb asymmetry becomes signif-
icant, as experimentally observed [13]. We notice that
this model does not reproduce quantitatively the Px ob-
served in [13], whereas the full classical solution of Hamil-
tonian (1) does. For the range of parameters used in this
experiment, the tunnel exit is close to the ionic core as
compared to the quiver radius, so the hypotheses un-
derlying the model are not met initially. In particular,
we observe that the guiding-center energy is not con-
served for a short transient (∼ 0.2 × 2π/ω) after tunnel-
ionization.

Two kinds of photoelectrons coexist –direct and rescat-
tered electrons– and contribute to the PMDs, and both
are essential for probing the ion-electron interaction.
However, the chaotic behavior of the rescattered electron

trajectories, as shown in high-energetic part of ATI spec-
tra [35], reduces their local contribution in the PMDs.
Figure 3 shows the scattering angle of the electron as
a function of the initial conditions (t0, p⊥), computed
from the trajectories of Hamiltonian (1). We observe
chaotic regions which are the signature of the highly non-
linear interactions driving the electrons during rescatter-
ing. Two main chaotic regions, centered at ωt0 = π and
ωt0 = 3π/2, are surrounded by initial conditions leading
to electrons trapped into Rydberg states. We refer to
this set of domains as the rescattering domain. In our
model, the rescattering domain is determined by E < 0,
and the black lines in Fig. 3 are its boundaries E = 0.
We notice the very good agreement between the region
E < 0 in our model and the set of trajectories which have
undergone rescattering or remained trapped in Rydberg
states. In the upper panel of Fig. 3, we observe that for
ξ < ξc, the initial conditions of the T-trajectory belong to
the rescattering domain. Hence, even if the rescattered
trajectories are heavily weighted by the ADK ionization
rate, their local contribution in the PMDs is relatively
weak. Consequently, the electrons that contribute the
most are the ones close to the boundaries of the rescat-
tering domain, corresponding to electrons reaching the
detector with energy E = 0. Therefore, the maximum of
the ATI spectrum is at zero energy. As the laser param-
eters are varied, particularly the ellipticity, the rescat-
tering domain moves in the plane of initial conditions
after tunnel-ionization. For ξ > ξc, the T-trajectory no
longer belongs to the rescattering domain, as seen in the
bottom panel of Fig. 3, so the ATI spectrum is peaked
at ET and the PMDs are dominated by direct electrons.
Thus, we predict that the peak of the ATI spectrum is
located at E = max(0, ET ), corresponding to the grey
curve in Fig. 1a. We notice that when ξ increases further
away from ξc, the rescattering domain moves to regions
of initial conditions with very low ADK ionization rate.
Consequently, the contribution of rescattered electrons
and electrons with energy E = 0 in the PMDs becomes
very weak. Hence, we observe a lack of electrons in the
neighborhood of the origin of the PMDs.

In summary, we determined the microscopic mecha-
nisms responsible for the shape of PMDs from the analy-
sis of Hamiltonian (1), and in particular, we showed that
the change of shape observed in Ref. [13, 14] as elliptic-
ity is varied corresponds to a bifurcation. Our approach
is based on a guiding center driving the photoelectron
motion. This model provides several predictions on the
photoelectron motion and the shape of the PMDs, and
allows the control of the ratio between the yield of rescat-
tered and direct electrons.
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Villeneuve, and P. B. Corkum, J. Phys. B: At. Mol.
Opt. Phys. 38, 1923 (2005).

[17] S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and
N. I. Shvetsov-Shilovski, Phys. Rev. Lett. 93, 233002
(2004).

[18] A. D. Bandrauk and S. Chelkowski, Phys. Rev. Lett. 84,
3562 (2000).

[19] M. Li, Y. Liu, H. Liu, Q. Ning, L. Fu, J. Liu, Y. Deng,
C. Wu, L.-Y. Peng, and Q. Gong, Phys. Rev. Lett. 111,
023006 (2013).

[20] M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng,
Q. Gong, and Y. Liu, Phys. Rev. Lett. 112, 113002
(2014).

[21] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov.
Phys. JETP 64, 1191 (1986).

[22] N. B. Delone and V. P. Krainov, J. Opt. Soc. Am. B 8,
1207 (1991).

[23] L. Arissian, C. Smeenk, F. Turner, C. Trallero, A. V.
Sokolov, D. M. Villeneuve, A. Staudte, and P. B.
Corkum, Phys. Rev. Lett. 105, 133002 (2010).

[24] See Supplemental Material for a derivation of the model
and the critical ellipticity, for the effects of the close en-
counters with the ionic core, and for the robustness of the
results with respect to the nonadiabatic effects, which in-
cludes Refs. [25–29].

[25] J. R. Cary, and R. G. Littlejohn, Ann. of Phys. 151, 1
(1983).

[26] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev,
Sov. Phys. JETP 23, 924 (1966).

[27] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev,
Sov. Phys. JETP 24, 207 (1967).

[28] A. M. Perelomov, and V. S. Popov, Sov. Phys. JETP
25, 336 (1967).

[29] V. D. Mur, S. V. Popruzhenko, and V. S. Popov, J. Exp.
Theor. Phys. 92, 777 (2001).

[30] J. Javanainen, J. H. Eberly, and Q. Su, Phys. Rev. A
38, 3430 (1988).

[31] R. Bhatt, B. Piraux, and K. Burnett, Phys. Rev. A 37,
98 (1988).

[32] T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and
W. Sandner, Phys. Rev. Lett. 101, 233001 (2008).

[33] A. S. Landsman, A. N. Pfeiffer, C. Hofmann, M. Smo-
larski, C. Cirelli, and U. Keller, New J. Phys. 15, 013001
(2013).

[34] L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
[35] B. Walker, B. Sheehy, K. C. Kulander, and L. F. Di-

Mauro, Phys. Rev. Lett. 77, 5031 (1996).


