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The rapidly developing and converging fields of polaritonic chemistry and quantum optics necessitate
a unified approach to predict strongly-correlated light-matter interactions with atomic-scale resolution.
Towards this overarching goal, we introduce a general time-dependent density-functional theory to study
correlated electron, nuclear and photon interactions on the same quantized footing. We complement our
theoretical formulation with the first ab initio calculation of a correlated electron-nuclear-photon system.
For a CO2 molecule in an optical cavity, we construct the infrared spectra exhibiting Rabi splitting between
the upper and lower polaritonic branches, time-dependent quantum-electrodynamical observables such as
the electric displacement field, and observe cavity-modulated molecular motion. Our work opens an
important new avenue in introducing ab initio methods to the nascent field of collective strong vibrational
light-matter interactions.

Remarkable experiments at the interface of condensed
matter physics, quantum chemistry, and quantum optics
have sparked recent interest in understanding strongly cor-
related electronic, nuclear, and electromagnetic field de-
grees of freedom induced by strong light-matter coupling.
Experimentally different regimes including optomechan-
ics in picocavities [1], vibrational ultra-strong coupling for
chemical systems [2], strong coupling of surface plasmon
polaritons and molecular vibrations [3], the anomalous Ra-
man response under strong light-matter coupling [4], ther-
modynamics of strongly coupled molecules [5], and the
change of the reaction rates under strong-light matter cou-
pling [6] have been explored. Theoretically, such strong
coupling has been analyzed for cavity-controlled chemistry
via a polaron-decoupling [7], vibrationally dressed polari-
tons [8], changes in potential-energy surfaces [9, 10], spec-
troscopy [11] or changes in the ground-state under ultra-
strong coupling [12].

Recently, first-principles methods such as density-
functional theory (DFT) including time-dependent density-
functional theory (TDDFT) have been generalized to
the realm of correlated electron-photon interactions.
This quantum-electrodynamical density-functional theory
(QEDFT) [13–16] treats electrons and photons on the
same quantized footing. As an exact reformulation of
the Schrödinger equation, QEDFT can predict exactly cor-
related electron-photon dynamics in full real-space [16],
linking closely with experimental observables. QEDFT
has been shown to correctly capture correlated electron-
photon systems [17, 18], but so far has not been demon-
strated for problems in strong vibrational-photon coupling
as observed in recent experiments [1–3, 6]. Yet, vibrational
effects play a critical role in chemical reactions, for exam-
ple, the altering the vibrational mode by strong light-matter
coupling has been demonstrated to directly influence the
reaction [6] potentially allowing for a site-selective chem-
istry. Since in strong vibrational-photon coupling exper-
iments, the vibrational energies are on the same order of
magnitude as the cavity mode, theory requires treating both
on the same level of theory [19]. To computationally cap-

ture the correlated nature of the electron-nuclear interac-
tion, many different approaches have been pursued in a
DFT framework [20–27]. However, none of these methods
include quantized electromagnetic fields which are essen-
tial for cavity correlated effects [28].

We close this critical gap and present a comprehensive
theory that is capable of treating electron-nuclear-photon
systems on the same quantized footing. In this paper,
we discuss an important generalization of QEDFT to the
realm of nuclear interactions with strong implications for
experiments in cavity-driven molecule-light interactions.

The general setup of the theory is as follows. The matter
component of the correlated system contains ne electrons
and NN =

∑K
I=1NI nuclei. With K we specify the num-

ber of different nuclei species, each containing NI nuclei.
We define a nuclei species I by common charge ZI and
mass MI . If a nuclear species contains more than one nu-
cleus, these particles are physically indistinguishable, as
is the case for more than one electron. The matter com-
ponent of the system is coupled to N quantized electro-
magnetic field (photon) modes. In the nonrelativistic limit,
length-gauge, and dipole approximation [29], the dynam-
ics of the system is given by the following time-dependent
Schrödinger equation [19]

i
∂

∂t
Ψ(r,R, q, t) = Ĥ(t)Ψ(r,R, q, t), (1)

with initial state Ψ0(r,R, q, t0), where we introduce
the following notation for the electronic coordinates
r = (r1, ..., rne

), the nuclear coordinates R =
(R1,1, ...,RK,NK

), and the photon coordinates q =
(q1, ..., qN ), respectively.

The Hamiltonian of the full problem is given by Ĥ(t) =

Ĥ0 + Ĥext(t), where Ĥ0 describes the internal Hamilto-
nian of the different subsystems and their interactions, and
Ĥext(t) allows to control the entire system using external



2

classical variables. Let us first specify

Ĥext(t) =

∫
dr vext(r, t)n̂(r) +

K∑
I=1

F(I)
ext (t) · RI

+
N∑
α=1

j
(α)
ext (t)

ωα
q̂α. (2)

Hereby we have defined the external potential vext that cou-
ples to the electron density

n(r, t) =

〈
Ψ(t)

∣∣∣∣ ne∑
i=1

δ(r− ri)
∣∣∣∣Ψ(t)

〉
. (3)

where the many-body wave function Ψ(t) is the solution to
Eq. 1. The classical force F(I)

ext (t) couples to

RI(t) =

〈
Ψ(t)

∣∣∣∣ NI∑
β=1

RI,β

∣∣∣∣Ψ(t)

〉
. (4)

For every species in the system, RI corresponds to the
center-of-mass motion of that species. If the species con-
tains more than a single nucleus, we find a system of in-
distinguishable particles where the individual RI,β can not
be told apart and only the center of mass motion is measur-
able [30]. Finally, the classical time-derivative of a current
j
(α)
ext (t) couples to the photon displacement coordinate

qα(t) = 〈Ψ(t)| q̂α |Ψ(t)〉 , (5)

which is connected to the mode-resolved physical observ-
ables of the field, i.e. the electric displacement field
D̂α(x) =

√
4πωαλα(x)q̂α. For the following discussion,

we assume the internal Hamiltonian Ĥ0 as

Ĥ0 =
ne∑
i=1

−
~∇2
i

2
+
∑
i>j

1

|ri − rj|
+ Ĥp

+
K∑
I=1

NI∑
β=1

−
~∇2
I,β

2MI

+ V̂ (r,R), (6)

where the first line describes the electronic and photonic
Hamiltonian, and the second line the nuclear Hamiltonian
including V̂ that contains all electron-nuclear and nuclear-
nuclear interactions. We will for now not specify V̂ , but
only specify it in the actual application. We proceed by
defining the photonic Hamiltonian as

Ĥp =
N∑
α=1

1

2

[
p̂2α + ω2

α

(
q̂α +

λα
ωα
· µ̂
)2
]
, (7)

with the total dipole moment of the system µ̂ =∑K
I=1 ZIRI −

∑ne

i=1 ri.
We now demonstrate that QEDFT can be extended to in-
clude nuclear systems using an extension of the Runge-
Gross theorem to arbitrary multicomponent systems [31]
that has been applied to electron and nuclei coupled sys-
tems [30].

Every density-functional theory is based on a one-to-one
correspondence between internal variables and external
variables. Both directly follow from the external Hamil-
tonian given by Eq. 2. Therefore, the main formal result
of this work can be illustrated by the following one-to-one
correspondence that holds for a given initial state Ψ0(

n,RI , qα
)
←→
1:1

(
vext,F

(I)
ext , j

(α)
ext
)
. (8)

While the previously introduced Eqns. 1-7 define the map-
ping

(
vext,F

(I)
ext , j

(α)
ext
)
−→

(
n,RI , qα

)
, the inverse map-

ping does not exist in general.
To show Eq. 8, we introduce the equations of motion

(EOM) for the internal variables in Eq. 8. We start by dis-
cussing the EOM for the photon coordinate qα(t) that is
given by [16]

q̈α(t) + ω2
αqα(t) + ωαλα · µ(t) = −j(α)ext (t)/ωα. (9)

This equation is a wave equation and identical to
Maxwell’s equations in the length-gauge with the external
source term −j(α)ext (t)/ωα. Next, we look at the K EOM
for the nuclei coordinates RI . We find

MIR̈I(t)+
NI∑
β=1

N∑
α=1

ZIωαλα

(
qα(t) +

λα
ωα
· µ(t)

)

+
NI∑
β=1

F(I,β)
str (t) = −

NI∑
β=1

F(I)
ext (t), (10)

with the nuclear stress force F(I,β)
str (t) =

〈Ψ(t)|~∇I,βV̂ (r,R)|Ψ(t)〉 that is by construction identical
for each particle β.

The EOM for the electron density n(r, t) is given by the
following Sturm-Liouville problem

n̈(r, t) + ~∇ · Fstr(r, t) +
N∑
α=1

~∇ · Fα(r, t) + ~∇ · FN(r, t)

= ~∇ ·
(
n(r, t)~∇vext(r, t)

)
, (11)

which contains force densities Fstr/α/N(r, t) originated by
the kinetic energy, electron-electron interactions, electron-
photon, electron-nuclear respectively and are given by

Fstr(r, t) =i 〈Ψ(t)| [T̂ (r) + Ŵ (r, r′), ĵp(r)] |Ψ(t)〉 ,
FN(r, t) =i 〈Ψ(t)| [V̂ (r,R), ĵp(r)] |Ψ(t)〉 ,
Fα(r, t) =λα 〈Ψ(t)| n̂(r) (λα · µ̂ + ωαq̂α) |Ψ(t)〉 .

with the paramagnetic current operator ĵp(r) [32]. T̂ , and
Ŵ correspond to the first and second term of Eq. 6.

These coupled Eqns. 9-11 and the initial values n(r, t0),
ṅ(r, t0), RI(t0), ṘI(t0), qα(t0), and q̇α(t0) represent an
exact reformulation of the Schrödinger equation of Eq. 1
and therefore completely define the internal variables of
Eq. 8. The uniqueness of the mapping defined in Eq. 8
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can be proven under the usual TDDFT assumption of t-
analyticity such that a Taylor expansion around the initial
time t0 is possible [33]. Then, we can follow closely the
original TDDFT proof [34] with extensions to electron-
nuclear systems [30] and QEDFT [14, 15]. We show
that for given initial state Ψ0, two different sets of exter-
nal variables, i.e.

(
vext,F

(I)
ext , j

(α)
ext
)

and
(
v

′

ext,F
(I)′

ext , j
(α)′

ext )
)

will always lead to two different sets of internal variables
(n,RI , qα), and (n′,R′I , q′α). First, we perform a Taylor-
expansion of vext(r, t), F(I)

ext (t), and j
(α)
ext (t) around ini-

tial time t0 to obtain the Taylor coefficients v(k)ext (r, t0),
F(I,k)

ext (t0), and j
(α,k)
ext (t0). Second, we then insert this

expansion into Eqns. 9-11 to obtain the Taylor coeffi-
cients of (n,RI , qα) in terms of v(k)ext (r, t0), F(I,k)

ext (t0), and
j
(α,k)
ext (t0) and accordingly for the second set (n′,R′I , q′α).

Third, assuming a minimum order of k = kmin for which
the difference of the external set does not vanish [35],
we find a non-vanishing difference of (n,RI , qα) and
(n′,R′I , q′α) for kmin + 2. As a consequence, (n,RI , qα)
and (n′,R′I , q′α) will be different at t0 + δt [36]. There-
fore two different sets of external variables will always lead
to two different sets of internal variables, thus proving the
mapping outlined in Eq. 8 for given initial state Ψ0 [37].

To solve the coupled Eqns. 9-11 in practice, we need
explicit expressions in terms of n, RI , qα for the nuclear
force F(I,β)

str and the electronic force densities Fstr,FN ,Fα.
To approximate these quantities, we use a Kohn-Sham
scheme, which is very successful in electronic-structure
calculations (see, e.g., Refs. [30, 38]). In total, we find
n+N +NI ×K Kohn-Sham equations that read as fol-
lows

i
∂

∂t
ϕi(r, t) =

[
−
~∇2
i

2
+ vs(r, t)

]
ϕi(r, t) (12)

MIQ̈I,β(t) = −F(I,β)
s (t) (13)

q̈α(t) + ω2
αqα(t) = −j(α)s (t)/ωα, (14)

where we have to choose the same initial conditions, i.e.
n(r, t0) =

∑ne

i=1 ϕ
∗
i (r, t0)ϕi(r, t0), ṅ(r, t0), RI(t0) =∑NI

β=1 QI,β(t0), ṘI(t0), and qα(t0), q̇α(t0), as in the phys-
ical system. For the photons subsystem we find

j(α)s (t) = ω2
αλα · µ(t) + j

(α)
ext (t). (15)

where all terms are explicitly known. We depict a
schematic illustration of the proposed scheme in Fig. S1.

In Eq. 13, we have introduced Kohn-Sham trajectories
QI,β for every single nucleus in the system. However, if
we have indistinguishable particles, only the total trajec-
tory QI of that species is observable. In this way, the nu-
clear force F(I)

s (t) is defined such that the sum of all Kohn-
Sham trajectories QI,β reproduces the exact total trajectory
of that species, i.e. RI(t) =

∑NI

β=1 QI,β(t). This way we

define

F(I,β)
s (t) =

N∑
α=1

ZIωαλα

(
qα(t) +

λα
ωα
· µ(t)

)
+ F(I,β)

Mxc (t) + F(I)
ext (t), (16)

where the sum of F(I,β)
Mxc (t) is defined as

∑NI

β=1 F(I,β)
Mxc (t) =∑NI

β=1 F(I,β)
str (t) describes the Mean-field exchange-

correlation (Mxc) contribution [39]. For the electronic
Kohn-Sham system, we define the following Kohn-Sham
potentials

vs(r, t) = vext(r, t) + vMxc(r, t) (17)

with the Mxc potential

vMxc(r, t) = vHxc(r, t) +
N∑
α=1

v
(α)
Mxc(r, t) + v

(N)
Mxc(r, t),

where these potentials are exactly defined in terms of
Sturm-Liouville equations

~∇ ·
(
n(r, t)~∇vHxc(r, t)

)
= ~∇ ·

(
F(s)

str (r, t)− Fstr(r, t)
)
,

(18)

~∇ ·
(
n(r, t)~∇v(α)Mxc(r, t)

)
= ~∇ · Fα(r, t), (19)

~∇ ·
(
n(r, t)~∇v(N)

Mxc(r, t)
)

= ~∇ · FN(r, t). (20)

Over the last decades, the electronic-structure com-
munity has developed a large selection of possible
approximations to the exchange-correlation (xc) poten-
tial [40]. In contrast, the nascent field of QEDFT has not
yet seen the same development of approximations, so far
only the one-photon optimized-effective potential (OEP)
has been successfully used [17, 18]. Other possibilities
are a parameterization along the lines of the local-density
approximation (LDA) [41] in TDDFT. As being closely
linked to QEDFT, the present formalism also allows to
connect to the OEP [42] route that seems promising in the
limit of weak electron-nuclear correlations.

Next, we specify the electron-nuclear potential V̂ in
Eq. 6 as [30]

V̂ (r,R) =
1

2

K∑
I=1

NI∑
β=1

K∑
J=1

NJ∑
γ=1

(Jγ 6=Iβ)

ZIZJ
|RI,β − RJ,γ |

−
ne∑
i=1

K∑
I=1

NI∑
β=1

ZI
|ri − RI,β|

, (21)

where the first line describes the nuclear-nuclear interac-
tion, while the second line describes the electron-nuclear
interaction. For systems, where the overlap of nuclear wave
functions remains small, such as molecular vibrations, we
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FIG. 1. Infrared spectra in vibrational strong coupling for
CO2. Black spectrum refers to the spectrum outside the cavity.
We explicitly depict the two infrared-active vibrational modes
of the CO2 molecule. Blue spectra correspond to the electron-
nuclear spectrum. Importantly, we capture the Rabi splitting be-
tween the lower and upper polariton branch.

use the following approximation [30] which can be used in
Eq. 13

F(I,β)
M (t) =

K∑
J=1

NJ∑
γ=1

(Jγ 6=Iβ)

ZIZJ(QJ,γ −QI,β)

|QI,β −QJ,γ |3

−
∫
dr
ZIn(r, t)

(
r−QI,β

)
|r−QI,β|3

. (22)

This force depends explicitly on the individual nuclear tra-
jectory QI,β and therefore is similar to the self-interaction
correction (SIC) of DFT [30]. Using this equation, we re-
cover the Ehrenfest scheme [43], i.e. a mixed quantum-
classical scheme that treats the electrons quantum me-
chanically coupled to classical nuclei. Analogously, the
electron-nuclear potential follows as

v
(N)
M (r, t) = −

K∑
I=1

NI∑
β=1

ZI
|r−QI,β(t)|

. (23)

We now apply the presented formalism to vibrational
strong-coupling of light to a molecular system (CO2

molecule) [44] We find for CO2 three infrared(IR)-active
vibrational excitations, that are shown in Fig. 1 in black,
one at 2430 cm−1 and the second one with a two-fold
degeneracy at 654 cm−1 (experimental results are 2350
cm−1 and 667.5 cm−1 [45], respectively). To obtain the
infrared spectra, we initially excite the three vibrational
modes such that the carbon atom is displaced by 0.01Å in
all three spatial directions and record the time-evolution
of the total dipole moment µ(t) for 5 ps. The Fourier
transform of the dipole moment yields then the infrared
spectrum [43]. In Fig. 1, we also depict for all IR active
modes their normal mode oscillation. If the molecule is
strongly coupled to a cavity mode, we find Rabi splitting

0.02
0

-0.02

µ
(t

)

(a) λ = 0
Excitation of 2430 cm−1 vibrational mode

0.02
0

-0.02

µ
(t

)

(b) λ = 0.05

0 100 200 300 400 500 600
time (fs)

3
1.5

0
-1.5

-3

q α
(t

)

(c) λ = 0.05

FIG. 2. Vibrational excitation at 2430 cm−1. Initial displace-
ment of the C-atom of 0.01Å, (a) dipole moment CO2 outside the
cavity, (b) dipole moment CO2 under strong light-matter cou-
pling for λα = 0.05, (c) the photon displacement coordinate
qα(t) as defined in Eq. 5 for λα = 0.05.

in the infrared spectra emerging. To simulate vibra-
tional strong coupling, we choose the cavity frequency
ωα = 2430 cm−1 in resonance to the vibrational excita-
tion at 2430 cm−1 with polarization in x-direction. By
varying the matter-photon coupling parameter λα = |λα|,
we can tune the system from the weak to the strong
coupling limit. In Fig. 1, we show in blue the spectra
for λα = (0.02, 0.05, 0.1) and find the Rabi-splitting
occurring with increasing splitting for stronger λα. Next,
to analyze the dynamics of the system under vibrational
strong light-matter coupling in more detail, we initially
displace the carbon molecule by 0.01Å to specifically
excite the 2430 cm−1 vibration. In Fig. 2 (a), we show the
time-dependent dipole moment of the system under that
initial excitation for up to 600 fs without matter-photon
coupling. The system oscillates very regularly with a
frequency of 2430 cm−1. If we choose λα = 0.05, we
find an additional frequency occurring as an envelope that
corresponds to the Rabi splitting as shown in Fig. 2 (b).
In (c), we show a new observable that is now possible
to calculate with this novel formalism. We depict the
time-evolution of the photon displacement coordinate and
find additionally to the regular oscillation an envelope
given by the Rabi splitting. In the last example, we study
in this paper, we initialize the three nuclei with random
velocities drawn from a Maxwell-Boltzmann distribution
corresponding to T = 100 K. The infrared spectrum
of this run depicted in Fig. 3 shows not the same clean
signature of the Rabi splitting as in Fig. 1-2 but rather a
broadband with many peaks around 2430 cm−1, although
the cavity mode is in resonance to that frequency. Due
to the initial random velocities, the molecule is spinning
during the simulation time and thus the effective interac-
tion strength λα,eff(t) = eα · µ(t) changes in time. In the
center of Fig. 3, we show the expectation value of qα(t).
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FIG. 3. Spinning molecule. From top to bottom: Infrared spec-
trum after 5 ps for a CO2 molecule under strong-light matter cou-
pling with λα = 0.05. Center: time-evolution of the expectation
value of qα(t). Bottom: Snapshots of the nuclear positions of
the spinning molecule for t = (0, 1205, 4000) fs. The blue area
indicates the polarization direction of the photon mode.

Although we also find an envelope that is a fingerprint
of Rabi oscillations, in contrast to Fig. 2, we do not find
a regular envelope function. This can be understood by
looking at the atoms coordinates during the run as plotted
in the bottom of Fig. 3 for t = (0, 1205, 4000) fs (and as a
movie in the SI). Since the molecule spins around its center
of mass, we find that λα,eff(t) ∈ [0, 0.05]. This directly
translates into the spectra that exhibits a broadband of
peaks at 2430 cm−1.

In our work, we have demonstrated a new density-
functional theory-based approach to treat the correlated
electron-nuclear-photon problem. The Runge-Gross proof
of QEDFT has been extended to the realm of nuclear mo-
tion, and we have applied this new theoretical method to
analyze vibrational strong coupling, of high relevance to
experimental work in this field. Our calculations are the
first ab initio calculations of vibrational strong coupling in
cavities with observables that quantitatively connect with
the new fields of polaritonic chemistry [46] and nanoplas-
monics [1, 47] that are pushing the envelope in strong
light-matter interactions. Future directions include the ab
initio study of chemical reactions using quantum transi-
tion state theory [48] within the framework of polaritonic
chemistry [46] that have recently been demonstrated ex-
perimentally [6] and are now within computational reach.
to study excited-state phenomena [49] of vibrationally
strongly-coupled cavity systems within a linear-response
formalism, and the study of the rotational-vibrational side-
bands under strong light-matter coupling. We envision us-
ing this understanding of quantum-cavity controlled vibra-
tional strong coupling as a testbed to develop a general
methodology for optical control of chemical dynamics via
strong light-matter coupling to alter the fundamental path-

ways of molecular species, and by accessing matter-photon
correlations, creating a new method of quantum correlated
spectroscopy.
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