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We use a quantum sensor based on thermal Rydberg atoms to receive data encoded in electromag-
netic fields in the extreme electrically small regime, with a sensing volume over 107 times smaller
than the cube of the electric field wavelength. We introduce the standard quantum limit for data
capacity, and experimentally observe quantum-limited data reception for bandwidths from 10 kHz
up to 30 MHz. In doing this, we provide a useful alternative to classical communication antennas,
which become increasingly ineffective when the size of the antenna is significantly smaller than the

wavelength of the electromagnetic field.

Antennas do not obey Moore’s law. As cutting-edge
devices become smaller and smaller, the communication
transmitter and receiver antennas present significant size
constraints [1, 2]. This is because fundamental principles
limit the performance of a traditional antenna that is
significantly smaller than the wavelength of the electro-
magnetic field being detected, A. Specifically, a lossless,
resonant, electrically-small antenna of characteristic ra-
dius a is guaranteed to have a quality factor ) greater
than the Chu limit, Qcny = A3/(27a)?, that limits the
operation bandwidth to BWen, < fo/Qchu for carrier
frequency fo.

This limit, pioneered by Chu, Wheeler, Harrington,
Mclean and others, influences the design of a wide range
of communication technologies using carrier frequencies
ranging from DC up to GHz frequencies [2-6]. Discovery
of modest optimizations within the Chu limit constraint
is still an active area of research [7, 8|, as well as ex-
ploration into alternative communications technologies,
(e.g. based on acoustics or active circuits) that are not
subject to the Chu limit [9, 10]. Here we introduce an-
other alternative path: using a quantum sensor operating
at the standard quantum limit (SQL) to receive classical
communications.

In this Letter, we first introduce the SQL for data ca-
pacity (or channel capacity) Csqr, of a receiver based
on a quantum sensor and perform a basic comparison
with the Chu limit. For our experimental parameters,
the quantum system nominally gives improvements of
over 4-orders of magnitude over the Chu limit. Sec-
ond, we experimentally demonstrate quantum-limited re-
ception of signals using thermal Rydberg atoms. By
achieving photon-shot-noise-limited readout and increas-
ing the operation bandwidth beyond the decoherence
rate, we observe a transition from the steady-state
electromagnetically-induced transparency (EIT) regime
to quantum-limited scaling corresponding to operation
at the SQL for 60 effective atoms [11].

A number of recent experiments have used thermal Ry-
dberg atoms for state-of-the-art sensors of electric fields
[12-19]. Most of these experiments were primarily fo-
cused on sensitivity, and operated at bandwidths lower

than the decoherence rates set by EIT power broaden-
ing, transit broadening, and Doppler broadening, pre-
cluding operation at the SQL. We highlight that for
communication purposes, on the other hand, high band-
width is often the goal, and the fundamental quantum
limit can be reached. Our group and others have re-
cently introduced radio-frequency (rf) communications
receivers using atomic sensors [20-23], but have not ex-
plicitly reached the SQL. Previous receivers based on
Rydberg atoms [20-22] were also not deeply in the elec-
trically small regime, where significant advantages over
traditional receiver antennas are apparent.

Atomic sensors are not antennas, at least in the tra-
ditional sense. Traditional antennas are passive devices
designed to efficiently convert free space EM waves into
signals on a transmission line. On the other hand,
atomic electric field sensors often do not absorb net en-
ergy from the field, but rather use the atoms and ad-
ditional laser beams to perform nondestructive sensing
[24]. This sensing regime breaks a key assumption be-
hind the Chu limit—namely that of passive, destructive
sensing—allowing a quantum sensor using a single atom
to operate at an arbitrarily high bandwidth.

Consider the case where the goal of classical commu-
nication is to detect a high rate of data, given by data
capacity C' measured in bits per second, encoded here
in the amplitude modulation of an electric field with a
carrier frequency fy. The achievable C is given by the
Shannon-Hartley theorem [25], C' = fy x log,(1 + SNR?)
where fy is the rate that data symbols are sent, and
SNR is the signal-to-noise ratio, in standard deviation,
for detecting the electric field in a measurement window
of length t4 = 1/ fq.

Any quantum sensor based on 2-level systems ob-
serves the applied EM field as an evolution of a quan-
tum phase ¢ characterizing a superposition state |¢) =
%(\g) + €% |e)) with quantum states |g) and |e). In the
case of low frequency sensing, exclusively studied here,
an applied electric field E' changes the atomic transition
frequency by an amount dw = %ozE2 /h. In a sensing
time tg4, dw accumulates into the evolved quantum phase
¢ = dw xty. When operating with NV independent atoms,
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FIG. 1. The quantum limit for data capacity. (a) Data can
be sent, for example, by encoding information in the strength
of the electric field. The quantum sensor detects symbols by
measuring the evolved phase ¢ at the end of each period,
therefore inferring the transmitted symbol (right axis). (b)
The Chu limit to data capacity for an efficient 7 cm clas-
sical antenna is shown in green (see text for details). The
maximum standard quantum limit Cyax for our experimen-
tal parameters is shown in pink. The corresponding maximum
measured data capacity of our sensor is shown as black points.

the individual collapse of atomic wave-functions into ei-
ther |e) or |g) limits the resolution (given by standard
deviation, denoted by A) of a measurement of ¢ to the
SQL, A¢sqgr = 1/VN.

Figure 1(a) shows how the SQL limits communication.
For communication, the continuous observable ¢ can be
broken into a number of discrete binary symbols (e.g.
2 bits, 00 to 11, delineated by color in the figure). The
symbols may be transmitted, as is done here, by changing
the amplitude of a static or oscillatory electric field with
nominal amplitude Fy. Symbols are received at band-
width f4 by allowing ¢ to linearly evolve into a specific
binary state in time t4. In the optimum case, readout is
much faster than ¢4, and quantum noise is observed as an
instantaneous uncertainty to each readout of ¢ (shown as
red uncertainty distributions in Fig. 1(a)).

Combining the Shannon-Hartley theorem and the
SQL, we derive the quantum-limited data capacity, for
N independent atoms, to be

2
ow* - N > . )

CsqL = fa x logy (1 + 2
fa

Csqr, increases with fy until the argument inside the log-
arithm becomes approximately 4.92. This occurs at an
optimal (denoted by a star) data transmission rate fj =
0.505 x dwyv/N. The corresponding optimal quantum-
limited data capacity is, C§q;, = 1.16 x dwV/N. To
achieve a larger SNR or data capacity, one must increase
the atom number or probe an atomic state with a larger
polarizability. One potential avenue is to use Rydberg
states with higher principle quantum number n, where
the polarizability nominally scales as n” [26].

In Fig. 1(b), we present a basic comparison between
Csqr and the classical data capacity bound arising from
the Chu limit. To determine the Chu-limited data ca-
pacity, one needs to know both the bandwidth and the
SNR of the classical antenna. Here we consider an effi-
cient classical antenna with maximum Chu-limited data
rate fq ~ BWqg,, whose enclosing sphere [3] has the
same radius, a, as that required for our Rb vapor cell
(a = 3.75 cm). We consider the classical antenna to be
subjected to 50 Q2 Johnson noise at room temperature,
and plot for our experimental electric field, 0.8 V/cm.

The maximum achievable quantum-limited data ca-
pacity of our system, Cyrax, is plotted versus carrier fre-
quency fo as a pink line in Fig. 1(b). To obtain Cyjax,
we choose the optimum data rate to maximize Eq. 1 at
each fy, while enforcing f; <= fo. At fo = 107 Hz,
we reach the optimum data rate fq = fo = f]. Sub-
sequent increases in fy only reduce Csqr., and therefore
Cmax becomes flat (equal to Cgqy,). The experimentally
measured maximum capacity is shown in black points
[27]. The measurements used to obtain these data are
described in detail in later sections and Fig. 3(b).

The quantum sensor outperforms the efficient
electrically-small antenna by a factor of more than 10* at
10 MHz, and the advantage is even more extreme at lower
frequencies. For the ¢ = 3.75 cm antenna considered
here, the Chu limit and SQL cross at fy ~ 1.5 x 10% Hz,
as the traditional antenna leaves the extreme electri-
cally small regime. To be clear, there are other meth-
ods that surpass the nominal Chu-limited data capacity,
such as using inefficient designs [28], active Non-Foster
circuit elements [10, 29], or non-impedance-matched an-
tennas (viable when the field wavelength is long and
reflections can be tolerated). It is also important to
note that for many communications applications, exter-
nal noise sources—blackbody, cosmic, man-made, and at-
mospheric noise-can dominate the internal receiver noise,
be it quantum or classical. Despite these details that re-
quire further exploration, we expect quantum sensors can
provide significant benefits in sensitivity and bandwidth
for certain applications.

A simplified version of our experimental setup and level
diagram is shown in Fig. 2(a) and (b). Using two parallel
plates separated by 60 mm, we apply a transverse low-
frequency electric field. The 480 nm (blue) beam (tuned
to the ®Rb |5P3/5, F = 4) to [50D5,5) transition) and
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FIG. 2. (a) Experimental setup and (b) Level diagram. (c)

When no E-field is applied, we observe a single EIT transmis-
sion window (red circles). Low frequency electric fields cause
scalar and tensor Stark shifts, that split the resonance into
three peaks (blue triangles). (d) At ¢ = 0, we apply a square
pulse to the electric field. The probe transmission rapidly fol-
lows the applied field, but then slowly relaxes over 0.5 ms due
to free charges in the glass cell that shield the electric field.

the 780 nm (red) beam (tuned to the [5S; 5, F' = 3) to
|5P5 2, F' = 4) transition), counter-propagate to establish
nearly Doppler-free EIT. In the regime of low-frequency
E-fields, we detect the Stark shift of the Rydberg state,
ow = %aEQ, where « is the scalar polarizability of the
atomic transition, approximately constant for the low fre-
quencies applied here. The [50D5 /) Rydberg state splits
into three sublevels due to the tensor component of the
polarizability: |m;| = 1/2, |m;|=3/2, |m;|=5/2. We cal-
culate the polarizabilities of these states to be a = 27 x
(-36, 42, 212) MHz/(V/cm)? respectively[30]. In Fig.
2(c), we show a plot of the EIT transmission profile with
no electric field (red circles), and with an electric field
of 0.4 V/cm applied (blue triangles). The peak splits
into the three m; sublevels. To detect electric fields,
we observe the change in transmission of the 780 nm
probe laser through the cell as the EIT resonance fre-
quencies are changed due to the applied electric field. For
high SNR readout, we overlap the 780 nm probe beam
with a strong heterodyne local oscillator (LO) detuned
by 78.5 MHz. In contrast to rf systems, optical hetero-
dyne detection allows readout with zero thermal noise;
here we observe quantum shot noise to be 6 dB greater
than detector noise. More details about the experimental
setup can be found in our previous work [20].

An example trace is shown in Fig. 2(d). Att =0s, we
turn on the electric field from zero (on EIT resonance) to

0.8 V/cm. The probe transmission (gray line), normal-
ized to the total transmission associated with EIT, drops
accordingly, corresponding to the Rydberg state shifting
off of 2-photon resonance. Over 0.5 ms, however, the
transmitted signal relaxes to the original value, indicat-
ing a relaxation to zero of the electric field observed by
the atoms. This effect has been studied in other vapor-
cell based systems and can be attributed to free charges
in the glass cell shielding the electric field [12, 31]. How-
ever, for reasonably high bandwidths of 100 kHz or more,
we observe this relaxation effect to be less significant.

To calculate the data capacity of our receiver, we mea-
sure the SNR for detecting a quantum phase ¢ as a func-
tion of data rate, f;. Instead of explicitly operating at
many different frequencies, we apply a step function in
the electric field, as is done in Fig. 2(d) or the inset of
Fig. 3(a), and measure the SNR of detecting the step
as a function of measurement bandwidth. Specifically,
for each applied step in the field, we average the probe
transmission signal in a time window of length ¢4 (pink
window in inset of Fig. 3(a)) placed adjacent to the step.
The outcome of this average can be used to determine a
sent data symbol [20] [32]. To change the effective band-
width, we change the length of the averaging window
ta = 1/f4. We determine the SNR from the outcome of
100 independent measurements of the electric field. The
resulting SNR for detecting an electric field as a function
of data rate is shown as black solid data points in Fig.
3(a). By independently calibrating the PSN level, we
measure and subtract out additional 1/f laser noise that
contributes at low frequencies (plotted as open circles in
Fig. 3 (a)). For simplicity we have chosen the electric
field strength to create Stark shifts on the order of the
EIT linewidth. However, using active stabilization of the
probe laser to the EIT feature, the dynamic range can be
made much larger than the linewidth. For strong fields,
Rydberg state mixing must be accounted for [12].

In many quantum sensors, state selective readout
means photon shot noise (PSN) is uncorrelated with
atomic shot noise [33]. In EIT, on the other hand, scat-
tering of a photon has a one-to-one correspondence with
atom wave-function collapse. Explicitly, the SNR that
we observe is determined by the number of atoms that
collapse into the EIT bright state, absorbing and scat-
tering photons out of the probe beam during the com-
munication time t;. This leads to a quantum-limited
SNR, SNRgqr = 0wes - tanv/QN, where N is the total
atom number and @ is the total intrinsic quantum ef-
ficiency that includes path losses, technical noise that
partially hides quantum fluctuations, non-infinite opti-
cal depth, as well as the fundamental 50% efficiency of
heterodyne detection. @ can also be absorbed into an
effective atom number N.g = QN, for which we observe
quantum-limited operation. We also define the effective
Stark shift dweg that accounts for reductions in the signal
due to additional decoherence, non-optimal probing, and



shielding effects (with associated signal efficiency Qsig),
et = 0w X Qsig-

If the symbol period t4 is longer than the coherence
time of the dark state in the presence of the electric
field, an atom is likely to scatter many times during a
single symbol. In this steady-state (SS) regime, the SNR
is SNRgs = /Nest - tq/7, where 7 is the characteristic
time for an atom to transition from the dark state to the
bright state and scatter a photon. In Fig. 3(a), SNRgg
is displayed as a blue dotted line. If t; < 7, atoms col-
lapse, on average, less than once in the symbol period.
In this regime, the SNR can approach the quantum limit.
SNRgqr is plotted as a red dashed line in Fig. 3(a).

We fit our observed SNR in Fig. 3 to a model com-
bining the two SNR limits, SNRgqr, and SNRgg. Since
the applied Stark shift is larger than the rubidium D2
excited state lifetime (I' = 27 x 6 MHz), we set the
scattering rate 1/7 in the model to be the upper bound,
T'/2 [20]. We allow dweg and Neg to be fit parameters.
The fit is plotted as a pink line in Fig. 3(a). The fit
returns dweg = 680(60) kHz and Neg = 63(7). From
this we deduce Qsig ~ 3%. Further, the measured op-
tical depth and EIT contrast allows us to approximate
the total number of atoms participating in EIT to be
of order 10%, which gives the total quantum efficiency
Q of approximately 0.5%. These returned values are in
rough agreement with what we predict from known inef-
ficiencies. We explicitly observe the transition from the
steady state PSN regime to the SQL regime at 800 kHz,
a frequency governed by 7. Previous Rydberg electrom-
etry experiments have focused on lower bandwidth sens-
ing, and have not explicitly reached the regime of SQL
scaling [14]. However, we emphasize that atomic wave-
function collapse, resulting in quantum noise in the trans-
mitted light, limits the SNR at all bandwidths, even in
the steady-state regime.

In Fig. 3(b) (inset), we plot the SNR for detecting
a symbol in a bandwidth f; = 0.5 MHz as a function
of the effective atom number Ng. Here we adjust Neg
by changing a static electric field, moving the EIT two-
photon transition off of resonance. Figure 3(b) shows
that the SNR, limited by atomic wavefunction collapse
manifesting as PSN, indeed scales as v/Neg (fit displayed
as solid orange line). This scaling is observed in both the
steady state and SQL-scaling regimes and can be equiv-
alently viewed as either a consequence of atomic wave-
function collapse or photon shot noise.

In Fig. 3(b), we plot (black points) the data capacity
C, with no noise subtractions, inferred from the mea-
sured SNR and data rate of Fig. 3(a) using the Shannon-
Hartley theorem. Csqr,, using dweg and Neg, is shown as
a pink line. These data and theory are the same as that
of Fig. 1(b) except plotted directly versus fg, leading to
a drop in C when fq > fi = 3x 107 Hz. At the optimum
data rate we achieve Cgqp, = 4 X 107 bits/s. We high-
light that further improvements can only be realized by
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FIG. 3. Quantum-limited operation. (a) We measure probe
transmission through the cell in bandwidth f4 = 1/t4 by av-
eraging for time ¢4 (inset). Directly measured SNR (black
points) and SNR with technical noise subtracted (open cir-
cles) is plotted versus fq. At high frequencies, we observe the
standard-quantum-limited SNR scaling (red dash). At lower
frequencies, we observe a steady-state, square root scaling
of SNR (blue dots). The data is fit to the complete quan-
tum noise model (pink line). The SNR data (open circles) lie
within two standard deviations of the fit over the fitted range
of fqs = 5 x 10* Hz to fq = 107 Hz. The larger deviations
at low frequencies are due to the cell shielding effect. (b)
The SNR data from (a) is used to plot data capacity versus
fa. The quantum limit, for our fitted effective atom number
and signal size, is shown as a pink line. (inset) We plot the
SNR for receiving symbols in a bandwidth fq = 0.5 MHz as
a function of the effective atom number. The data is fit to a
square-root scaling.

increasing the effective atom number, the effective polar-
izability, or adding entanglement between the atoms.

More broadly, Fig. 3 associates the performance of our
atomic sensor used for classical data reception to the
foundational quantum principles governing the system.
This is important, for one, because it sets a fundamental
bound-much like the Chu limit for traditional antennas—
on the system’s capabilities based on the basic resources
used. Second, the ability to relate our receiver’s perfor-
mance to the underlying quantum dynamics also alludes
to the potential for Rydberg atomic sensors to extend
communication into the quantum regime. Current work
in this area is ongoing [34-39]; we hope that our results
further inspire quantum communication tools based on
Rydberg vapor cell platforms.
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