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Understanding multi-decadal variability is an essential goal of climate dynamics. For example,
the recent phenomenon referred to as the “global warming hiatus” may reflect a coupling to an
intrinsic, pre-industrial, multi-decadal variability process. Here, using a multi-fractal time series
method, we demonstrate that forty-two data sets of seventy-nine proxies with global coverage exhibit
pink noise characteristics on multi-decadal time scales. To quantify the persistence of this behavior,
we examine high-resolution ice core and speleothem data to find pink noise in both pre- and post-
industrial periods. We examine the spatial structure with Empirical Orthogonal Function (EOF)
analysis of the monthly-averaged surface temperature from 1901 to 2012. The first mode clearly
shows the distribution of ocean heat flux sinks located in the eastern Pacific and the Southern
Ocean, and has pink noise characteristics on a multi-decadal time-scale. We hypothesize that this
pink noise multi-decadal spatial mode may resonate with externally-driven greenhouse gas forcing,

driving large-scale climate processes.

A central question in contemporary climate science
concerns the relative roles of natural climate variability
and anthropogenic forcing. Indeed, understanding the
detailed human effect on global temperature is highly
complex due to the nonlinear interactions of anthro-
pogenic forcing with natural climate variability on multi-
ple timescales, many of which transcend a typical human
lifetime. The recent phenomena referred to as the “global
warming hiatus” [1-5] is a compelling example emphasiz-
ing the potential of such interactions. Understanding the
coupling between natural multi-decadal climate variabil-
ity and anthropogenic forcing is a fundamental aspect of
climate dynamics.

Here we describe a framework for characterizing the
dynamics of natural global climate variability on multi-
decadal timescales [6-8]. There are many challenges as-
sociated with direct investigations of the physical and
statistical characteristics of global observations on mul-
tiple timescales. First, the strong seasonal variability in
observations, such as surface air temperature, hinders the
detection of long-term spatiotemporal correlations [9-11].
Moreover, there is a substantial land-ocean contrast in
seasonal variability, making it difficult to extract the in-
fluence of climate variability on global scales. Second,
the maximum length of the available station-based ob-
servations is only approximately 100 years, which may
be insufficient to statistically discern multi-decadal vari-
ability. At the same time, nonlinear interactions between
natural and anthropogenic contributions to the multi-
decadal variability found in these observations cannot be
trivially disentangled. To overcome these obstacles, we
analyze the data in a manner that enables us to exclude
the contributions of the strong seasonality in the station-
based observations. Thus, we detect global multi-decadal
timescales corresponding to pink noise dynamics, defined
as having a power spectrum S(f) oc f~#, with frequency
f and B =~ 1, also generally termed 1/f noise when 0

< B < 2 le.g., 12-17]. Furthermore, we analyze high-
resolution proxy data spanning at least several hundred
years to detect the footprint of these dynamics and to
differentiate between anthropogenic forcing and natural
climate variability.

We study the statistical characteristics of the decadal
and multi-decadal variability of Earth’s climate by an-
alyzing the Goddard Institute for Space Studies (GISS)
monthly-averaged surface temperature data from 1901
to 2012 [18, 19], and proxy data, such as 680 and §'3C,
from ice-cores and speleothems from forty-two paleocli-
mate datasets (see Table 1 of [20]). To examine the tem-
poral dynamics of the data, we use Multi-Fractal Tem-
porally Weighted Detrended Fluctuation Analysis (MF-
TW-DFA) [11, 21]. This methodology captures the sta-
tistical dynamics (e.g., white noise, red noise, degree of
correlation) on multiple time scales. The veracity of the
approach has been demonstrated in various fields, such
as the study of Arctic sea ice extent [11], sea ice veloc-
ity fields [22], and even in the detection of exoplanets, in
all cases solely using the data with no a-priori modeling
[23]. This approach produces a statistical measure called
the fluctuation function, Fy(s), each moment of which
q, is assessed on multiple time scales s, as described in
[11, 20, 21] in more detail. For intuition, one can think
of the expectation value of Fy(s) as the weighted sum
of the auto-correlation function [e.g., 24]. The dominant
time scales in a system are the those where F,(s) versus
s changes slope and the individual slopes are associated
with the statistical dynamics of a system.

First, we analyze the GISS dataset by employing a new
stochastic dynamical method of time-series analysis that
was shown to capture the seasonal variability in monthly-
averaged temperature data from decadal to 133 years
[25]. This method centers on a periodic non-autonomous
stochastic model for the observed deviation in the surface
heat flux, z(t), given by & = a(t)x+N (t)£(t)+d(7), where



a(t) and N(t) are periodic functions with annual period-
icity, £(t) is stochastic noise, and d(7) represents decadal
forcing. Thus, the first two terms in the model explain
the seasonal variability and the last term d(7) captures
the trans-seasonal variability. The approach provides an-
alytical expressions for a(t), N(t) and d(7), and repro-
duces the observed monthly statistics (Fig. 1 of [25].)

Second, we employ MF-TW-DFA to analyze the an-
nual time-series for each latitude-longitude pair from the
GISS dataset. A dominant signal at all locations is the
presence of pink noise behavior (8 & 1) on multi-decadal
timescales. Pink noise, often referred to as “ubiquitous
noise” [e.g., 12-17], is observed in a wide range of sys-
tems, such as earthquakes, stellar luminosity, electron-
ics, and climate on a variety of time scales [e.g., 14]. We
quantify the spatial structure of this statistical behavior
by showing the timescales on a global map; Fig. 1 shows
the shortest timescale (in years) at which pink noise be-
havior appears in the data. Latitude-longitude pairs that
do not show such behavior are shown in red, while points
where no data was present are left blank. Time scales
greater than about 60 years are constrained by the finite
length of the dataset. Thus, the colors on Fig. 1 have two
interpretations; pink noise from 1 to 60 years but no pink
noise for longer times. Because both d(7) and annual av-
eraging of the data represent different forms of temporal
filtering, they exhibit similar timescales for the global
appearance of pink noise behavior, but we find quanti-
tative but not qualitative differences [20]. However, the
value of using d(7) is that it embodies the effects of sea-
sonal stability and noise on annual and longer time scales.
The point-wise values of d(7) in the GISS dataset exhibit
pink noise characteristics on decadal and multi-decadal
timescales nearly everywhere on the globe. Dominant
global climate variability phenomena such as the El Nino-
Southern Oscillation (ENSO) immediately emerge from
this analysis. ENSO has been studied extensively and
shown to influence global climate on time scales ranging
from inter-annual to multi-decadal through atmospheric
and oceanic teleconnections [e.g., 26]. This phenomenon
has also been related to global rainfall, a driver of global
natural climate variability, which is a response to the re-
gional amount of precipitation and evaporation, reflect-
ing the variability in surface heat flux.

To examine the spatial structure of d(7), and whether
it captures the principal contributions to decadal vari-
ability, we construct two one-point correlation maps. As
seen in Fig. 2, d(7) nearly mirrors two key decadal vari-
ability indices; (a) the Pacific Decadal Oscillation (PDO)
[6] and (b) the North Atlantic Oscillation (NAO) [27].
We use Empirical Orthogonal Function (EOF) analysis
[28] to determine the dominant spatial pattern. Fig. 2(c)
shows the first EOF mode and explains 21% of the to-
tal variance, with the rest of the modes characterized by
shorter timescales [20]. This first mode connects the ma-
jor PDO region in the eastern Pacific to the Southern
Ocean region (also seen in simulations [29]), and is very
similar to the so-called “hyper climate modes” [30] and

FIG. 1: Spatial distribution of the shortest timescale (in years)
at which pink noise behavior appears in the GISS dataset. This
transition takes place on multi-decadal timescales nearly
everywhere. The red color denotes locations that do not show
pink noise characteristics on timescales up to 65 years (half of
total length of the dataset), with the most prominent feature
being in the tropical eastern Pacific. White regions show locations
where continuous data are absent.

the “Inter-decadal Pacific Oscillation” (IPO) [8] in the
Pacific Ocean. The time-series of the Principal Compo-
nent (PC) shows clear multi-decadal variability. We note
that the sign of the mode changes from positive to nega-
tive at about the start of the new millennium. A negative
sign denotes the intensification of the negative PDO in
the North Pacific and the cooling of the Southern Ocean
circumpolar region. Simulations [1, 3] have shown that
the cooling of the eastern tropics is correlated with the
“global warming hiatus” and the average sea surface tem-
perature trends from ten climate models, which capture
the hiatus, are negative in the Eastern Pacific and South-
ern Ocean [4]. The leading EOF of d(7) introduced here
may be related to this hiatus. Fig. 2(d) shows the re-
sult of MF-TW-DFA using the time-series of the PC; the
onset of pink noise behavior occurs after approximately
15-years, indicated by the fluctuation function mirroring
the red dashed line denoting § = 1. This noise behavior
and its global presence on multi-decadal timescales raises
the natural question; is pink noise dynamics an internal
feature of the multi-decadal variability of our climate, or
imprinted on the climate system by anthropogenic forc-
ing? We address this question by analyzing paleoclimate
proxies.

Paleoclimate studies have been broadly successful in
observing the long-term evolution and variability of
Earth’s climate [e.g. 31, 32]. Due to their compara-
tively high resolution, we focus on the proxy data from
speleothems and ice cores to (a) understand the observed
pink signal in the GISS data, and (b) study the effect of
anthropogenic climate change on natural climate vari-
ability. Our datasets cover a substantial swath of the
globe; Asia, Europe, North America, Central America,
South America, and Antarctica along with the Pacific Is-
lands [20]. These data provide a long record of Earth’s
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FIG. 2: Spatial distribution of the values of d(7) represented by
one-point correlation maps and an Empirical Orthogonal
Function (EOF) analysis using the Goddard Institute for Space
Studies (GISS) surface monthly-averaged temperature from 1901
to 2012. Centered in the eastern Pacific at 120W, 20N, we
calculate the correlation between the d(7) at this position and
that at any other position (a). The spatial distribution of the
correlation is nearly identical to the dipole mode called the Pacific
Decadal Oscillation (PDO) [1]. The newly constructed index
(red), the normalized value of d(T)hQOW,Q()N — d(T)|180E,40N7 is
compared with the traditional normalized PDO index (blue),
which shows an excellent match. A similar one-point correlation
map is constructed based on the geographic position at 50W, 38N
and is shown in (b). This map is very similar to the SST pattern
in the negative state of the NAO [19], as shown by the correlation
between d(7)|s0w,38n — d(7)|40w,50~ (red) and the normalized
NAO index (blue). The EOF analysis is applied to the values of
d(7), with the leading mode explaining 21% of the total variance,
as shown in (c¢), along with the Principal Component (PC). This
mode connects the major PDO region in the eastern Pacific to the
Southern Ocean through a continuous same-sign region, as
distinguished from the other areas. The time-series of the
principle component of the mode is analyzed using MF-TW-DFA
(d). At lower frequencies the variability of d(7) parallel’s pink
noise (red dashed line, 8 = 1), with a crossover time of & 15 years.

climate system, drawing from many sources dating back
more than 100,000 years. Figure 3(a) shows the fluctua-
tion functions for the paleoclimate proxy data from var-
ious sources [20]. Two things are immediately evident:
nearly all datasets show consistent pink noise behavior,
and, as was observed in the GISS dataset, the transition
timescale to this behavior depends on geographic loca-
tion.

To study the impact of anthropogenic forcing on inter-
nal climate variability and the observed pink noise be-
havior, we use MF-TW-DFA to analyze only data up
to 1850 A.D. Figure 3 shows that the fluctuation func-
tions with and without the post-industrial period exhibit
very little difference, indicating that the observed pink
noise behavior is intrinsic to Earth’s climate dynamics.
In data from the last 80,000 years, we also find a timescale
of approximately 1470 years (Fig. 4), the signal often
ascribed to Dansgaard-Oeschger (DO) events [32]. We
hypothesize the possibility of a stochastic resonance pro-
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FIG. 3: The initial (a,c) and final (b,d) timescales exhibiting
pink noise dynamics in the paleoclimate data across the globe
[20], where a & b (c & d) show the analysis for the complete
dataset (after removing data from 1850-present), to enable us to
distinguish between natural climate variability and anthropogenic
forcing. There are no discernible differences between (a,b) and
(c,d), implying that pink noise dynamics are an internal
characteristic of the Earth’s climate system.

cess due to the presence of pink noise on multi-decadal
timescales as follows. Nozaki and Yamamoto [33] showed
that for noise with 1/f%, 0 < B < 2, the noise inten-
sity for which resonance takes place is minimized when
B =~ 1 for relaxation oscillator dynamical systems, and
DO events exhibit relaxation oscillation behavior [34, 35].
Thus, the resonance efficiency is mazximal for § ~ 1, and
in all of these proxies DO events are preceded by pink
noise on multi-decadal to centennial timescales, suggest-
ing a much smaller pink noise intensity can lead to a
new climatic state relative to other noise types, such as
white noise. Importantly, whether the DO events arise
from stochastic resonance, a “ghost-resonance” or a re-
lated process is actively debated [e.g., 35—40], and here
we emphasize that the time scale emerges from a stochas-
tic data analysis method with no assumptions regarding
periodicity. We note further that in the dust flux data,
which spans the last 800,000 years, we see a clear periodic
100,000-year signal related to the Milankovitch eccentric-
ity cycle, providing a fidelity check for our methodology.

Proxies such as §'%0 and 6'3C, from ice-cores and
speleothems, are used to infer past temperature, amongst
other climate variables. Because temperature reflects
heat flux at a given location, such flux dependent quan-
tities are key mirrors of the climate system. In the
low (high) latitudes, heat fluxes drive precipitation-
evaporation (freezing-melting). Thus, global moisture
fluxes are reflected with high fidelity in the ice core and
speleothem proxy data and thereby encode aspects of
climate variability. For example, ENSO underlies major
global rainfall patterns through atmospheric and oceanic
teleconnections. Importantly, there are regional differ-
ences in the timescales over which the various paleo-
climate proxies exhibit pink noise. Each precipitation-
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FIG. 4: Fluctuation functions F»(s) for paleoclimate proxy data
(see inset and Table I in [20]) spanning at least the past 80,000
years. The red stars show the crossover timescale of ~ 1470 years,
associated with Dansgaard-Oeschger events. For reference, the
black diamond denotes the 100,000 year Milankovitch eccentricity
cycle, the time scale of Late Pleistocene glaciations. The black
line has a slope of unity (8 = 1).

based proxy depends on the net heat flux at a given lo-
cation and hence we expect regional variability of the
pink noise timescales.

Analysis of Sea Surface Temperature (SST) data has
also revealed pink noise in the mid-latitudes [41], ratio-
nalized by a simple vertical diffusion model with a shal-
low mixed layer forced by random atmospheric motions
[42]. Essential here is the accumulation of the response
from random atmospheric forcing due to the large heat
capacity of ocean. This local variability in the mid-
latitude and tropical oceans is transferred to the global
scale via atmospheric teleconnections and ocean waves
[26, 43]. Here, this is reflected in our first EOF mode
with a time evolution that shows pink noise statistics
on multi-decadal time-scales. Moreover, the IPO, which
we have shown mirrors our first EOF mode, is strongly
linked to global precipitation [43], consistent with the re-
lationship between the pink noise behavior found in the
proxies that reflect precipitation and the EOF mode.

Kendal and Jgrgensen [13] have shown that both pink

4

noise and fluctuation scaling (wherein the variance of a
sequence of observations x is related to the mean by a
power law; Var(z) o< 2°) imply each other and can be ex-
plained by a central limit-like convergence theorem that
establishes which Tweedie exponential dispersion models
act as foci for this convergence [44]. The duality between
fluctuation scaling and pink noise not only provides a uni-
versal treatment of the statistics of the global mode that
emerges from this wide range of data we have studied,
but a common understanding of their non-Gaussianity.

We note that the intrinsic nature of both the first EOF
mode and the pink noise behavior suggest the intriguing
potential of a resonance with external low-frequency forc-
ing, such as that associated with anthropogenic effects.
Such a resonance may underlie processes associated with
global warming hiatus, emphasizing the importance of
understanding internal multi-decadal variability.

Finally, non-autonomous stochastic differential equa-
tions constitute a key organizing center of our approach
[25], and they are also central to the so-called super-
symmetric theory of stochastics [e.g., 45, 46]. That ap-
proach argues that pink noise is a manifestation of the
spontaneous breakdown of topological supersymmetry.
However, to ascribe the associated Goldstone modes to
specific climate processes is too speculative at present,
although the breaking of time-reversal symmetry by
Earth’s rotation has been shown to provide a topologi-
cal origin for equatorially trapped waves [47]. Therefore,
understanding the origin of the emergence the decadal
modes in the climate system that we have observed here
may be fruitfully pursued along these lines.
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