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We formulate the statistical dynamics of topological defects in the active nematic phase, formed
in two dimensions by a collection of self-driven particles on a substrate. An important consequence
of the non-equilibrium drive is the spontaneous motility of strength +1/2 disclinations. Starting
from the hydrodynamic equations of active nematics, we derive an interacting particle description of
defects that includes active torques. We show that activity, within perturbation theory, lowers the
defect-unbinding transition temperature, determining a critical line in the temperature-activity plane
that separates the quasi-long-range ordered (nematic) and disordered (isotropic) phases. Below a
critical activity, defects remain bound as rotational noise decorrelates the directed dynamics of +1/2
defects, stabilizing the quasi-long-range ordered nematic state. This activity threshold vanishes at
low temperature, leading to a re-entrant transition. At large enough activity, active forces always
exceed thermal ones and the perturbative result fails, suggesting that in this regime activity will
always disorder the system. Crucially, rotational diffusion being a two-dimensional phenomenon,
defect unbinding cannot be described by a simplified one-dimensional model.

Liquid crystals exhibit remarkable orientationally-
ordered phases, the simplest being the nematic phase
in which particles macroscopically align along a sin-
gle preferred orientation, without a head-tail distinc-
tion. The name nematic itself comes from νηµα, mean-
ing thread, for the line-like topological defects (discli-
nations) that are inevitably produced in quenches from
the high-temperature disordered phase to the nematic
phase [1–4]. In two dimensions (2d), though, disclina-
tions are point-like defects, and so may be thought of
as localized particles. The nematic pattern around a
disclination is a distinctive fingerprint of the spontaneous
symmetry-breaking that characterizes nematic order and
distinguishes the elementary defects from, say, integer
strength vortices in two-dimensional spin systems. The
nematic director rotates through a half-integer multiple
of 2π as one circumnavigates a defect. Thus, the lowest-
energy defects are referred to as carrying strength ±1/2.
In 2d equilibrium nematics the entropic unbinding of such
point disclinations drives the nematic to isotropic (NI)
transition [5–8].

In recent years there has been much focus on nematics
composed of elongated units that are self-driven - hence
active nematics [9, 10]. Examples include collections of
living cells [11–17], synthetic systems built of cellular ex-
tracts [18–20], and vibrated granular rods [21]. Active
nematics exhibit complex spatio-temporal dynamics, ac-
companied by spontaneous defect proliferation. Much
progress has been made in understanding the properties
of the ordered phase [9, 22–26], but a complete theory
of order, fluctuations, defects and phase transitions of
active nematics still eludes us. Although the nematic
itself has no net polarity, the director pattern around
a strength +1/2 defect has a local comet-like geomet-

FIG. 1: Potential V (r) for a neutral defect pair for the config-
uration in which the direction of motility of the +1/2 disclina-
tion points away from the −1/2 and is held fixed. This näıve
picture suggests that incipient active defect pairs have an ex-
ponentially small, but finite, rate to overcome the barrier at
low temperature, and hence always unbind.

ric polarity (Fig. 1). In an active system this renders
+1/2 defects motile [21, 27] with a self-propelling speed
proportional to activity [27]. Both experiments [14, 18–
20, 28–30] and simulations [27, 31–37] have shown that
motile defects play a key role in driving self-sustained
active flows.

In this paper we precisely map the dynamics of active
defects onto that of a mixture of motile (+1/2) and pas-
sive (−1/2) particles with interaction forces and align-
ing torques, putting on firm ground previous purely phe-
nomenological models [19, 27, 38]. A key new result is the
derivation of the angular dynamics of the +1/2 defects.
Treating activity as a small parameter, we then con-
struct and solve the defect Fokker-Planck equation and
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show that activity weakens the logarithmic attraction
between opposite-charge defects. As a result, increas-
ing activity past a threshold drives a nonequilibrium NI
phase transition to a phase of unbound defects, much like
the Berezenskii-Kosterlitz-Thouless (BKT) transition in
2d spin systems [5–7] and passive nematics [8]. Rota-
tional diffusion (DR) of the +1/2 defect is suppressed at
low noise, where self-propulsion directly drives unbinding
with a threshold that vanishes as DR goes to zero. This
yields a re-entrant isotropic-nematic-isotropic sequence
[55] as a function of temperature at fixed activity. Our
effective equations for defect dynamics also provide a sim-
ple model capable of quantifying the dynamics of inter-
acting active defects in confined geometries.
The proof of the existence of a low-activity quasi-long-

range ordered active nematic in 2d [22, 26] is an im-
portant result because a näıve argument suggests oth-
erwise. In an equilibrium nematic, two ±1/2 defects at
a distance r experience an attractive interaction V0(r) =
(πK/2) ln (r/a), with K a Frank elastic constant and a
the size of the defect core. Hence, neglecting inertia, they
are drawn towards each other according to ṙ = −µ∂rV0,
with µ a defect mobility. One could then argue that the
dynamics of a suitably oriented ±1/2 defect pair in an
active nematic is governed by relaxation in an effective
potential [27]

ṙ = −µ∂rV , V (r) =
πK

2
ln
( r

a

)

−
|v|

µ
r , (1)

where |v| is the self-propelling speed with which the
+1/2 disclination is moving away from the −1/2
disclination (see Fig. 1). The resulting barrier
V (rc) = (πK/2) [ln (πµK/(2|v|a))− 1] at distance rc =
πµK/(2|v|) is finite, which means that the defect pair
is always unbound, and active nematic order thus de-
stroyed, at any nonzero temperature (Fig. 1). As activity
is increased, more and more defect pairs will be liberated
[18, 27, 31] suggesting that nematic order would be com-
pletely destroyed by the swarming disordered cores, much
like driven vortices in superconducting films can destroy
superconductivity. Here we show that this heuristic ar-
gument fails because rotational noise, by disrupting the
directed motion of the +1/2 defects, counterintuitively
restores the ordered nematic phase.
We begin with the hydrodynamics of a 2d nematic liq-

uid crystal written in terms of the flow velocity u and the
tensor order parameter Qµν = S(2nµnν − δµν), where S
is the scalar order parameter and n̂ is the director field.
We ignore density fluctuations, although we expect this
restriction could be dropped without qualitatively chang-
ing the results. The Q equation is as for passive nematics
[39],

γDtQ =
[

a2 − a4 tr(Q2)
]

Q+K∇2Q , (2)

where Dt = ∂t + u · ∇ − [·,Ω] is the comoving and
corotational derivative with the vorticity tensor Ωµν =

(∇µuν −∇νuµ)/2. Only the relaxational part of the dy-
namics is retained in Eq. 2, with γ a rotational viscosity,
K a Frank elastic constant and a2, a4 the parameters
that set the mean-field NI transition at a2 = 0. A treat-
ment including various flow alignment terms is given in
the SI. At equilibrium, the homogeneous ordered state
for a2 > 0 has S0 =

√

a2/(2a4) and an elastic coherence

length ξ =
√

K/a2. For an isolated static ±1/2 defect in
equilibrium, the director n̂(ϕ) = (cos(ϕ/2),± sin(ϕ/2))
rotates by ±π with the azimuthal angle ϕ, and S van-
ishes at the core of the defect, assuming its bulk value
on length scales larger than the defect core size a ∼ ξ.
Activity enters in the force balance equation, which, ig-
noring inertia and in-plane viscous dissipation, is given
by −Γu+∇·σa = 0, where Γ is the friction with the sub-
strate and σa = αQ is the active stress tensor that cap-
tures the internal forces generated by active units [40, 41].
We neglect elastic and Ericksen stresses as they are higher
order in gradients. The system is extensile for α < 0 and
contractile for α > 0. For a +1/2 disclination, the active
backflow at its core gives rise to a self-propulsion speed
∼ |α|/(Γa) [27, 38].
The +1/2 disclination has a local geometric polariza-

tion ei = a∇·Q(r+i ) (evaluated at the core of the defect),
defined here to be dimensionless. Note that ei is not a
unit vector. Our treatment does not require the mode ex-
pansion used in Ref. [42] to treat multi-defect configura-
tions. An isolated +1/2 defect has a non-vanishing flow
velocity at its core (u(r+i ) = vei, v = αS0/Γa), while
the −1/2 defect doesn’t, due to its three-fold symmetry
(u(r−i ) = 0) [56]. We show that the resulting positional
dynamics of the defects, including both motility and pas-
sive interactions (for a derivation, see SI) [57], is given
by

ṙ+i = vei − µ∇iU +
√

2µTξi(t) , (3a)

ṙ−i = −µ∇iU +
√

2µTξi(t) , (3b)

where µ ∝ 1/γ is a defect mobility, ξi(t) Gaussian white
noise and

U = −2πK
∑

i6=j

qiqj ln

∣

∣

∣

∣

ri − rj

a

∣

∣

∣

∣

, (4)

is the Coulomb interaction between defects, with qi =
±1/2 the strength of the ith defect. The elastic con-
stant K includes corrections from hydrodynamic flows
linear in activity which can destabilize the nematic state
even in the absence of topological defects [43, 44]. Here
we take K > 0 (permitted in a domain of parameter
space [43, 44]) to guarantee an elastically stable nematic.
Note that v ∝ α can be of either sign. The translational
noise strength T arises from thermal or active noise in
the Q equation (Eq. 2). A more sophisticated calcula-
tion (see SI) gives logarithmic corrections to the defect
mobility µ [45–48]. The important feature of activity is
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that it elevates the geometric structural polarity of the
+1/2 disclination to a dynamical degree of freedom, one
that drives motion. In turn, ei also has its own dynam-
ics, which is in principle contained in the Q equation.
Neglecting noise for now and using the quasistatic ap-
proximation in a frame comoving with the +1/2 defect,
i.e [∂tQ]

r
+

i
(t) = 0, we have ėi(t) = a[vi(t)·∇]∇·Q(r+i (t)),

where vi = vei − µ∇iU is the deterministic part of ṙ+i
(Eq. 3a). Our approximation neglects elastic torques on
ei due to smooth director distortions, shown to be unim-
portant for the dynamics of neutral pairs [49, 50] (a more
detailed justification and comparison is given in the SI).
Assuming a dilute gas of slowly moving defects, we per-
turbatively expand Eq. 2 about the equilibrium defect
configuration and solve for Q. Using this solution, we
evaluate ∇∇ ·Q at the core of the defect to obtain (for
details, see SI)

ėi = −
5γ

8K
[vi · (vi − vei)] ei −

vγ

8K
(vi × ei) ǫ · ei , (5)

where ǫ is the two-dimensional Levi-Civita tensor. Since
ei is not a unit vector, its deterministic dynamics has
a term along ei fixing its preferred magnitude and one
transverse to it aligning the polarization to the force.
To elucidate the nature of the torques on the polar-

ization, we write ei = |ei|(cos θi, sin θi) and decompose
the elastic force acting on the ith defect (Fi = −∇iU)
as Fi = |Fi|(cosψi, sinψi). For the defect orientation θi,
Eq. 5 then reduces to

∂tθi = v
µγ

8K
|Fi||ei| sin(θi − ψi) . (6)

Active backflows tend to align the defect polarization
with the force acting on the defect. A similar alignment
kernel has been used previously to phenomenologically
model flocking and jamming in cellular systems [51, 52],
but here it arises naturally from the active dynamics of
a 2d nematic. Importantly, here the torque is controlled
by activity (v ∝ α). An extensile system (v ∝ α < 0)
favors alignment of the polarization with the force, while
a contractile system (v ∝ α > 0) favors anti-alignment

of polarization and force (Fig. 2). The equations ob-
tained here also predict patterns for four +1/2 defects
on a sphere as obtained in Ref. [19].
For configurations in which the +1/2 is running away

from the −1/2 in an isolated neutral defect pair, the ac-
tive aligning torque (Eq. 6) stabilizes the +1/2 defect
polarization against transverse fluctuations (see Fig. 2a-
b), irrespective of the sign of activity. Hence activity not
only renders the +1/2 defect motile, but enhances the
persistence of defect motion through the torques, favor-
ing the unbinding of defect pairs. This feature breaks the
symmetry between pair creation and annihilation events
for both extensile and contractile systems and justifies
the 1d cartoon in Fig. 1. As we will see below, however,
the stochastic part of the defect dynamics (neglected so

FIG. 2: Configurations of defect pairs whose orientations, for
an imposed fixed separation, are stable to transverse fluctu-
ations of the +1/2 polarization(s). The active backflow is
shown in blue and the director configuration in black. The
polarization and force on each +1/2 defect is shown in red and
in purple respectively. The top row shows a neutral ±1/2 de-
fect pair orientationally stable for (a) extensile (v < 0) and
(b) contractile (v > 0) systems. Similarly, in the bottom row
we have a pair of +1/2 defects that are orientationally stable.
The far field nematic texture for these two-defect configura-
tions has an aster-like structure when (c) extensile (v < 0)
and a vortex-like structure when (d) contractile (v > 0).

far) can disrupt these configurations, preventing unbind-
ing. We finally remark that one can also obtain config-
urations for pairs of +1/2 disclinations (Fig. 2c-d) that
are stable against transverse deflections of either polar-
ization. As shown, aster-like structures are favored in an
extensile system while vortex-like structures are favored
in a contractile one, as seen in confined fibroblasts [53].

The stochastic part of the dynamics of ei also derives
from noise in the dynamics of Q, but a full calculation is
challenging and beyond the scope of the present work. In
the limit of low activity, we assume that the noise statis-
tics can be inferred from the known equilibrium joint
probability distribution of r±i and ei,

P 2N
eq =

1

Z2N
e−U/T

N
∏

i=1

(

K

2πT
e−K|ei|

2/2T

)

, (7)

where Z2N is the Coulomb gas partition function and
K|ei|

2/2 is the simplest contribution to the defect core
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FIG. 3: Phase boundary in the |v| − T plane (Eq. 11) for dif-
ferent values of µγ. The region enclosed by the curve |vc(T )|
for a given µγ corresponds to the ordered nematic.

energy [54]. This results in

ėi =
5µγ

8K
[∇iU · (vei − µ∇iU)]ei +

vµγ

8K
(∇iU × ei) ǫ · ei

−
√

2DR ǫ · ei ηi(t) + νi(t) , (8)

where we have written vi in terms of the force −∇iU .
Smooth director phase fluctuations can be shown to gen-
erate rotational noise (first term in the second line of
Eq. 8) that changes the direction of ei, while keeping |ei|
fixed. Here ηi(t) is unit white noise and DR = µT/ℓ2R is
the rotational diffusivity of the +1/2 defect, with ℓR ∼ a.
The properties of the longitudinal component νi(t) of the
noise are determined by requiring that the probability
distribution of the defect gas relaxes to the corresponding
equilibrium form where (for one Frank constant) defect
position and polarization are decoupled in the absence of
activity (i.e., for v = 0), with the result (see SI)

〈νi(t)νj(t
′)〉 = 1δijT

5µ2γ

4

|∇iU|
2

K2
δ(t− t′) . (9)

No summation on repeated indices is implied. As written,
the noise has no stochastic ambiguity and is independent
of any thermodynamic parameters, involving only the de-
fect mobility µ and rotational viscosity γ, as it should.
To study defect unbinding, we now examine the dy-

namics of an isolated ±1/2 defect pair governed by cou-
pled Langevin equations for the pair separation r =
r+ − r− (obtained from Eqs. 3a,3b) and the +1/2 polar-
ization e (Eq. 8). We derive and solve the corresponding
Fokker-Planck equation for the steady state distribution,
perturbatively in activity by using an isotropic closure
for 〈ee〉 and neglecting all higher order moments in e

(see SI). Integrating over the polarization, we obtain the
steady-state defect pair density at large distances to have
an equilibrium-like form ρss(r) ∝ e−Ueff(r)/T with an ef-
fective pair potential Ueff(r) ≃ (πKeff/2) ln(r/a) where,
to leading order in activity,

Keff(v) = K −
v2

2µDR

[

1 + µγ
3T

4K

]

+O(v4) . (10)
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FIG. 4: Steady-state statistics for a ±1/2 defect pair in a
periodic box of size L = 50a (T/T eq

c = 0.51, all other param-
eters are unity). (a) The pair separation distribution ρss(r)
for low (|v| = 0.5, 1.2, bound phase) and high (|v| = 1.5,
unbound phase) activity, suggesting that Eq. 11 which gives
|vc| ≃ 2.06, overestimates the unbinding threshold. (b) The
distribution of the relative angle (∆ = θ−ψ) between the po-
larization e and the force F on the +1/2 defect for extensile
(�) and contractile (©) systems.

Hence, for large pair separation, the defect interaction
is weakened by activity. A small activity reduces the
entropic BKT transition temperature T eq

c = πK/8 to
Tc(v) = πKeff(v)/8. Inverting this equation for small |v|,
we obtain the phase boundary below which the ordered
nematic is stable,

|vc(T )|

v∗
=

√

√

√

√

16 T̃ (1− T̃ )

π
[

1 + (3π/32)µγT̃
] , (11)

with T̃ = T/T eq
c and v∗ = µT eq

c /ℓR. As shown in Fig. 3,
this implies re-entrant behavior as a function of T . If
the rotational diffusivity DR has a non-thermal part Da

R,
then there is a nonzero activity threshold ∼

√

Da
R for

unbinding as T → 0 and no re-entrance at low activity.
If Da

R is large enough then re-entrance is abolished al-
together. For |v| > |vc(T )|, the effective pair potential
Ueff develops a maximum as in Fig. 1, thereby implying
that incipient defect pairs unbind for arbitrarily small
temperature. The physical picture is then quite clear.
At low activity, rotational diffusion randomizes the ori-
entation of the +1/2 disclination and makes its motion
less persistent, allowing the defect pair to remain bound.
It is in this way that noise counterintuitively stabilizes
the ordered nematic phase. At higher activity, the ac-
tive torques compete with rotational diffusion, but ulti-
mately enhance the persistent nature of defect motion.
In this case rotational noise becomes irrelevant and we
recover the scenario sketched in Fig. 1. The simple 1d
model predicts defect unbinding self-consistently if the
persistence length of the +1/2 disclination (|v|/DR) is
greater than the position of the barrier in the potential
(rc = K/(|v|γ)). Equating the two lengths, we obtain the
same threshold scaling as in Eq. 11 at low T . We have
verified this scenario by numerically integrating Eqs. 3
and 8 for either sign of v, as shown in Fig. 4.
In summary, starting from the equations of motion of a
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2d active nematic, we have derived the statistical dynam-
ics of its topological defects as a noisy mixture of motile
and non-motile particles. Through a Fokker-Planck ap-
proach, we show perturbatively that the rotational diffu-
sion of +1/2 defects allows the nematic phase to survive
defect proliferation below an activity threshold. We iden-
tify, for small activity, the temperature-activity locus of
a BKT-like active-nematic/isotropic transition, and pro-
vide arguments suggesting that defects are unbound at
any nonzero temperature above a critical activity, and
that a re-entrant disordered phase arises at low temper-
ature. Venturing beyond the present perturbative ap-
proach and taking many-defect features, such as screen-
ing, into account are clearly the immediate challenges.
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mailto:sushanka@syr.edu
mailto:sriram@iisc.ac.in
mailto:mcmarche@syr.edu
mailto:bowick@kitp.ucsb.edu


6

ities and chaos in a kinetic equation for active nematics.
New Journal of Physics, 16(3):035003, 2014.

[25] Sandrine Ngo, Anton Peshkov, Igor S Aranson, Eric
Bertin, Francesco Ginelli, and Hugues Chaté. Large-scale
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