aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Critical Level Crossings and Gapless Spin Liquid in the
Square-Lattice Spin-1/2 ] {1}-] {2} Heisenberg
Antiferromagnet
Ling Wang and Anders W. Sandvik
Phys. Rev. Lett. 121, 107202 — Published 4 September 2018
DOI: 10.1103/PhysRevlLett.121.107202


http://dx.doi.org/10.1103/PhysRevLett.121.107202

Critical level crossings and gapless spin liquid
in the square-lattice spin-1/2 J;-J, Heisenberg antiferromagnet

Ling Wang!** and Anders W. Sandvik? 3T

! Beijing Computational Science Research Center, 10 East Xibeiwang Rd, Beijing 100193, China
2 Department of Physics, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, USA
3 Beijing National Laboratory of Condensed Matter Physics and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
(Dated: August 7, 2018)

We use the DMRG method to calculate several energy eigenvalues of the frustrated S = 1/2
square-lattice Ji-J> Heisenberg model on 2L x L cylinders with L < 10. We identify excited-level
crossings versus the coupling ratio g = J2/Ji and study their drifts with the system size L. The
lowest singlet-triplet and singlet-quintuplet crossings converge rapidly (with corrections oc L™2)
to different g values, and we argue that these correspond to ground-state transitions between the
Néel antiferromagnet and a gapless spin liquid, at g.1 ~ 0.46, and between the spin liquid and a
valence-bond-solid at g.2 &~ 0.52. Previous studies of order parameters were not able to positively
discriminate between an extended spin liquid phase and a critical point. We expect level-crossing
analysis to be a generically powerful tool in DMRG studies of quantum phase transitions.

The spin-1/2 frustrated J;-J; Heisenberg model on the
two-dimensional (2D) square lattice (where J; and Js are
the strengths of the first and second neighbor couplings
S; - S;, respectively) has been studied and debated since
the early days of the high-T, cuprate superconductors [1-
12]. The initial interest in the system stemmed from the
proposal that frustrated antiferromagnetic (AFM) cou-
plings could lead to a spin liquid (SL) in which preformed
pairs (resonating valence bonds [13]) become supercon-
ducting upon doping [14, 15]. Later, with frustrated
quantum magnets emerging in their own right as an ac-
tive research field [16], the J;-J; model became a pro-
totypical 2D system for theoretical and computational
studies of quantum phase transitions and nonmagnetic
states [17-33]. Of primary interest is the transition from
the long-range Néel AFM ground state [34-36] at small
g = Ja/J1 to a nonmagnetic state in a window around
g ~ 0.5 (before a stripe AFM phase at g 2 0.6). The na-
ture of this quantum phase transition has remained enig-
matic [12, 17-21], despite a large number of calculations
with numerical tools of ever increasing sophistication,
e.g., the density matrix renormalization group (DMRG)
method [28, 29, 37, 38], tensor-product states [20, 21, 30—
33], and variational Monte Carlo [27, 39).

The nonmagnetic state may be one with spontaneously
broken lattice symmetries due to formation of a pattern
of singlets (a valence-bond-solid, VBS) or a SL. Within
these two classes of potential ground states there are sev-
eral different proposals, e.g., a columnar [6, 7, 12] ver-
sus a plaquette [17, 23, 29, 31] VBS, and gapless [27]
or gapped [28] SLs. The quantum phase transition out
of the AFM state may possibly be an unconventional
'deconfined’ transition [40-42], which recently has been
investigated primarily within other models [43-51] host-
ing direct AFM-VBS transitions. In the Ji-J> model,
some studies have indicated that the nonmagnetic phase
may actually comprise two different phases, with an en-

tire gapless SL phase—mnot just a critical point—existing
between the AFM and VBS states [29, 39]. However,
because of the small system sizes accessible, it was not
possible to rule out a direct AFM-VBS transitions. We
here demonstrate an intervening gapless SL by locating
the AFM-SL and SL-VBS transitions using a numerical
level-spectroscopy approach, where finite-size transition
points are defined using excited-level crossings. These
crossing points exhibit smooth size dependence and can
be more reliably extrapolated to infinite size than the
order parameters and gaps used in past studies.

We use a variant of the DMRG method [37, 38, 52, 53]
to calculate the ground state energy as well as several
of the lowest singlet, triplet and quintuplet excited en-
ergies. In the AFM state, the lowest excitation above
the singlet ground state in a finite system with an even
number of sites is a triplet—the lowest state in the An-
derson tower of ’quantum rotor’ states [34]. If the non-
magnetic ground state is a degenerate singlet when the
system length L. — oo, as it should be in both a VBS and
a topological (gapped) SL, there must be a crossing of the
lowest singlet and triplet excitation at a point g(L) that
approaches g. with increasing L. This is indeed observed
at the dimerization transition of the 1D J;-Js chain [54—
56] and related systems [57, 58], and size extrapolations
give g. to remarkable precision, even with system sizes
only up to L = 30. A level crossing with the same finite-
size behavior was observed recently also in the 2D J-Q
model [59], which is a Heisenberg model supplemented
by four-spin interactions causing an AFM-VBS transi-
tion [43-49], likely a deconfined quantum-critical point
with unusual scaling properties [50]. It is then natural to
investigate level crossings also in the 2D J;-J5 model.

We will demonstrate a singlet-triplet level crossing in
the Ji-Jo model which for 2L x L cylindrical lattices
shifts as geo — ge2(L) o< L™2 and converges to ges = 0.52.
We also observe a singlet-quintuplet level crossing, which
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FIG. 1. Illustration of the effective Hamiltonian H; below in
Eq. (1). Red and gray circles represent the targeted state [i1)
and the ground state |1)), respectively, and the blue squares
show the original Hamiltonian as a matrix-product operator.
The hatched area represents Uy |¢1), where U; projects to the
canonical MPS for |¢1) without the hatched area.

converges to a different point, g.; ~ 0.46. Given the
known transitions associated with singlet-triplet cross-
ings, and that a singlet-quintuplet crossing was found at
the transition between the critical and AFM states in a
Heisenberg chain with long-range interactions [56, 60],
we interpret both g.; and g2 as quantum-critical points.
For g1 < g < geo the system appears to be a gapless
SL with algebraically decaying correlations, as in one of
the scenarios proposed in Refs. 29 and 39 (and previously
discussed also in Ref. 61). Our value of g.; is in the mid-
dle of the range g = 0.4 ~ 0.5 where most recent studies
have put the end of the AFM phase [27-29, 39], and go
is close to the VBS-ordering point in Refs. 29 and 39.

DMRG calculations.—The DMRG method [37] is a
powerful tool for computing the ground state |¢) of a
many-body Hamiltonian. By solving a Hamiltonian Hg
in a relevant low-entangled subspace of the full Hilbert
space, one can obtain an effective wavefunction, through
which the most relevant subspace is selected for the next
iteration. A series of such subspace projectors produces
the ground state as a matrix product state (MPS), i.e.,
the wavefunction coefficients are traces of products of lo-
cal matrices of chosen size m [38, 62].

The lowest excited state |11) can also be targeted with
DMRG [53] provided that |19) has been pre-calculated.
The only difference from a ground-state DMRG algo-
rithm is that one has to maintain the orthogonality
condition (tq|thg) = 0 at each step. Upon reformu-
lating the Hamiltonian for the lowest excited state as
Hy = H — Mo|to){¢o|, where \g is the eigenvalue of H
corresponding to |1}, one can write down the effective
Hamiltonian equation in the DMRG procedure as

[UF (1 = dolwo) (o) U Ul ) = MU ), (1)

where Uy projects onto the canonical MPS [38] for |¢1)
without the center two sites, as illustrated in Fig. 1, and
A1 is the eigenvalue for |11). We can therefore define an
effective Hamiltonian Hle = UT (H — Xo|wo) (to]) Uy
Similarly, given that |¢;) for all i < j (A, < A;) have
been pre-calculated, we observe that one can compute
the next eigenstate j as an MPS with a given number of
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FIG. 2. Gaps to the relevant S = 0, 1, and 2 excitations vs g
for L = 10. The insets show the regions of the level crossings
of interest for L = 6,8,10 (gaps decreasing with increasing
L). The curves show polynomial fits.

kept Schmidt states m using a modified Hamiltonian

J—1

Hj=H =Y Nl {wil. (2)

=0

Here HgﬁUj\wﬁ = )\jU;Wj) as in Eq. (1). In practice
such a DMRG scheme will break down (i.e., unreasonably
large m has to be used) when the eigenstates far from the
bottom of the spectrum begin to violate the area law.

The 2L x L cylinder geometry, with open and peri-
odic boundaries in the x and y direction, respectively,
is known to be suitable for 2D DMRG calculations [63]
and we use it here for even L up to 10. We employ the
DMRG with either U(1) (the total spin z component S*
is conserved) or SU(2) symmetry. With U(1) symmetry,
we generate up to ten S* = 0 states and obtain the total
spin S by computing the expectation value of S2.

An advantage of focusing on the level spectrum is the
well known fact that the energy converges much faster
with the number m of Schmidt states than other phys-
ical observables, and also as a function of the number
of sweeps in the DMRG procedure. We here apply very
stringent convergence criteria and also extrapolate away
the remaining finite-m errors based on calculations for
several values of m up to m = 12000 with U(1) symme-
try and m = 5000 with SU(2) symmetry. The DMRG
procedures and extrapolations are further discussed in
Supplemental Material (SM) [64].

Results.—Figure 2 shows two singlet gaps and the low-
est triplet and quintuplet gaps versus g in and close to
the non-magnetic regime. The main graph shows results
for L = 10. One of the singlet gaps decreases rapidly
with increasing ¢, crossing the other three levels. This
is the lowest singlet excitation starting from g ~ 0.42,
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FIG. 3. (a) The gap-crossing points from Fig. 2 graphed
vs L™2. TFor the singlet-triplet (red squares) and singlet-

quintuplet (green circles) data sets, the black lines go through
the L = 8,10 points, while the colored curves are of the
form gc(L) = ge(o0) + aL72(1 + bL™%) with ge2(00) & 0.519,
ge1(o0) =~ 0463, and w =~ 4. (b) Size-scaled gaps at
the singlet-quintuplet (Ac1) and singlet-triplet (Ac2) cross-
ing points along with fits of the form LA(L) = ¢+ dL™7,
where 01 ~ 2 and 02 =~ 1.5.

after crossing the other singlet (which has other quan-
tum numbers related to the lattice symmetries) that is
lower in what we will argue is the AFM phase. The insets
of Fig. 2 show results also for L = 6 and 8 in the region
around the level crossings that we will analyze (the higher
gaps for L = 4 are not shown for clarity). Using polyno-
mial fits to the DMRG data points, we extract crossing
points g.1 (L) between the singlet and the quintuplet, as
well as ge2(L) between the singlet and the triplet. The
singlet-singlet crossings taking place close to g.1(L) are
discussed in the SM [64]; their size dependence is simi-
lar to ge1(L). For g 2 ge1(L) there are also other levels
in the energy range of Fig. 2, including singlets, but the
S =0,1,2 gaps graphed are the lowest with these spins
up to and beyond the largest g shown.

As L increases the two sets of crossing points drift to-
ward two different asymptotic values. For the singlet-
triplet crossings, we have considered different extrapola-
tion procedures with geo(L), all of which deliver g.o =
0.52 when L — oo. It is natural to test whether the
finite-size correction to g.p is consistent with the L2
drift in the frustrated Heisenberg chain [54-56]; a behav-
ior also found in the 2D J-@Q model in Ref. 59. In Fig. 3(a)
we graph the data versus L~2 along with a line drawn

through the L = 8 and L = 10 points, as well as a fitted
curve including a higher-order correction. Although we
have only four points and there are three free parameters,
it is not guaranteed that the fit should match the data as
well as it does. With a leading L' correction the best
fit is far from good. Therefore, we take the former fit as
evidence that the asymptotic drift is at least very close to
L2, The fit with the subleading correction in Fig. 3(a)
gives geo = 0.519; a minute change from the straight-
line extrapolation. Based on the differences between the
two extrapolations and roughly estimated errors on the
individual crossing points (which arise from the DMRG
extrapolations, as discussed in SM [64]), the final result
is ge2 = 0.519 £ 0.002.

Plotting the singlet-quintuplet crossing points in the
same graph in Fig. 3(a), the overall behavior is similar
to the singlet-triplet points, but it is clear that they do
not drift as far as to geo. We find that the L=2 form ap-
plies also here; see the SM [64] for further analysis of the
corrections for both g.; and g.2. A rough extrapolation
by a line drawn through the L = 8 and L = 10 points
gives g.1 ~ 0.465, and when including a correction, of the
same form as in the singlet-triplet case, the extrapolated
value moves only slightly down to g.; ~ 0.463. Based on
this analysis we conclude that g.; = 0.463 & 0.002.

In Fig. 3(b) we analyze the crossing gaps, multiplied
by L in order to make clearly visible the leading behavior
and well-behaved corrections. All gaps close as L™1, i.e.,
the dynamic exponent z = 1 at both critical points. We
have also analyzed the gaps in the regime g.1 < g < geo
(not shown), and it appears that the lowest S = 0,1,2
gaps all scale as L~! throughout. This phase should
therefore be a gapless (algebraic) SL, instead of a Zy SL
with nonzero triplet gap for L — oo [28] and singlet gap
vanishing exponentially (due to topological degeneracy).

The point g.o ~ 0.52 is higher than almost all previous
results reported for the point beyond which the AFM
order vanishes, but it is close to where recent works have
suggested a transition from a gapless SL into a VBS [29,
39]. If there indeed is a gapless SL intervening between
the AFM and the VBS phases and its lowest excitation
is a triplet (as is the case, e.g., in the critical Heisenberg
chain), then a singlet-triplet crossing is indeed expected
at the SL-VBS transition, since the triplet is gapped and
the ground state is degenerate in the VBS phase.

To interpret the singlet-quintuplet crossing at g.; ~
0.46, we again note that the nature of the low-lying gap-
less excitations reflect the properties of the ground state,
and a ground state transition can be accompanied by re-
arrangements of levels across sectors or within a sector
of fixed total spin. A singlet-quintuplet crossing is in-
deed present at the transition between a critical Heisen-
berg state (an 1D algebraic SL) and a long-range AFM
state in a spin chain with long-range unfrustrated inter-
actions and either unfrustrated [65] or frustrated [56, 60]
short-range interactions, as we discuss further in the SM
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FIG. 4. Log-log plot of (m2) vs L™'. The curves are of the
form (m2) = bL™*(1 — cL™*) with w = 0.5. The leading ex-
ponent, with errors estimated by changing w within its range
of good fits, are a = 1.35 £ 0.05 (¢ = 0.46), 1.53 £+ 0.08
(g =0.48), 1.69+0.10 (g = 0.50), and 1.78 £ 0.12 (¢ = 0.52).
The inset shows the same data on a linear scale. The L = 14
data (open circles) are from Ref. 29.

[64]. This analogy, and the fact that g.; is close to where
many previous works have located the end of the AFM
phase (as we also show below and in SM [64]), provides
compelling evidence for the association of the singlet-
quintuplet crossing with the AFM-SL transition. Fur-
thermore, the S = 2 quantum rotor state in the AFM
state has gap o L2, while at g.; it scales as L™! ac-
cording to Fig. 3. Thus, at this point (and for higher g)
the level spectrum is incompatible with AFM order.

We also computed the squared AFM order parameter
(sublattice magnetization per spin) (m?) in the putative
SL phase, with my defined on the central L x L part of
the 2L x L system (here with L up to 12). Since we
mainly focused on the excited energies, we did not push
the ground state (m?) calculations to as large L as in
some past works [28, 29]. To complement our own data,
we therefore also use L = 14 results from Ref. 29. In
cases where we have data for the same parameter values,
our results agree to within 0.2%. We fit the data to power
laws with a correction; (m?2) = bL=%(1 — cL™*), where
acceptable values of w span the range w ~ 0.2 ~ 1.5 and
the exponent « changes somewhat when varying w. In
Fig. 4 we show examples of fits with w = 0.5. We find
that « increases with g, from o ~ 1.3 at ¢ = 0.46 to
a =~ 1.8 at ¢ = 0.52. We have also tried to fix « to a
common value for all g, but this does not produce good
fits. We therefore agree with previous claims [29, 39]
that the exponent depends on g. At g = 0.5, our result
a ~ 1.7+ 0.1 is larger than the value 1.44 reported in
Ref. 29, with the difference explained by the correction
used here. The result agrees well with o = 1.53 4+ 0.09
from variational Monte Carlo calculations [39], and a sim-
ilar value was also reported with a projected entangled
pair state ansatz [21]. In the SM [64] we provide fur-

ther analysis showing that the AFM order vanishes at
the extrapolated level crossing point g.; ~ 0.46.

Discussion.—Our level-crossing analysis in combina-
tion with results for the sublattice magnetization show
consistently that the AFM phase ends at g.; =~ 0.46
and a gapless SL phase exists between this value and
ge2 ~ 0.52. In the level crossing approach the finite-
size transition points are sharply defined and the conver-
gence with system size is rapid, with corrections vanish-
ing as L=2 (or possibly L™ with a ~ 2). Our results
in Fig. 3(a) leave little doubt that the singlet-quintuplet
and singlet-triplet crossings converge to different points,
while we would expect convergence to the same point if
there is no SL between the AFM and VBS phases, as we
demonstrate explicitly in the SM [64] in the case of the J-
@ model. The behavior of the spin correlations and the
gaps imply a gapless SL with power-law decaying spin
correlations. In the region 0.52 < g < 0.62, between the
SL and the stripe-AFM, our calculations of excited states
reveal many low-lying singlets, and we have been able to
map them [66] onto the expected quasi-degenerate levels
expected for a columnar [39] VBS state.

The AFM-SL and SL-VBS phase boundaries are in
rough agreement with two recent works discussing a gap-
less SL phase followed by a VBS [29, 39], and the lower
boundary agrees well with a Lanczos-improved varia-
tional Monte Carlo calculation [27]. Many other past
studies have located the end of the AFM order close to
the same value. A recent exception is an infinite-size ten-
sor calculation [33] where the AFM order ends close to
our g.o point. However, the infinite-size approach is not
unbiased but depends on details of how the environment
tensors are constructed. The DMRG calculations, here
and in Ref. 29, are unbiased for finite size if the conver-
gence is checked carefully, and completely exclude AFM
order beyond our g.; value.

As far as we are aware, the critical singlet-quintuplet
crossing found here (and the singlet-singlet crossing in
the SM [64]) has not previously been discussed in the
2D context. This level crossing has been considered in
1D [56, 60], and in the SM [64] we present additional
evidence of its association with the AFM-SL transition.
The physical origin of the level crossing deserves further
study. The detailed information we have obtained on the
evolution of the low-energy levels in 2D should be use-
ful for discriminating between different field theoretical
descriptions of the phase transitions and the SL phase.

We expect that level crossings are common at 2D quan-
tum phase transitions, as they are in 1D. Our work sug-
gests that the best way to use 2D DMRG in studies of
quantum criticality is to first look for and analyze level
crossings to extract critical points, and then study or-
der parameters (conventional or topological) at this point
and in the phases. In principle the DMRG procedures
that we have employed here can also be extended to more
detailed level-spectroscopy studies [59, 67].
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