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We consider driving multi-orbital Mott insulators using laser radiation. We derive general expres-
sions for periodically driven spin-orbital models using time-dependent perturbation theory in the
strong interaction limit. We show that the effective exchange interactions of the Floquet spin-orbital
Hamiltonian are highly tunable via variations of the frequency, amplitude, and polarization of the
laser. We also take the effect of finite bandwidth of excitations into account and study possible heat-
ing effects. We further apply our formalism to orthorhombic titanates YTiO3 and LaTiO3 based on
first-principles calculations, and find that the spin exchange interactions in these compounds can be
engineered to a large extent by tuning the frequency and electric-field amplitude of the laser.

Periodically driven quantum systems have received sig-
nificant attention in recent years. The typical theoretical
prescription is to use the Floquet formalism [1, 2], which
allows for the description of a time-periodic system using
some effectively time-independent Hamiltonian dubbed
as the “Floquet Hamiltonian”, HF = i~ logU(T, 0)/T ,
where U(T, 0) is the time-evolution operator from time 0
to a full period T [3]. Despite the problem of thermaliza-
tion at long times [4, 5], it has been argued that at exper-
imentally accessible finite time scales the time evolution
of the system is well described by the time-independent
Floquet Hamiltonian [6].

Since the details of the Floquet Hamiltonian are cru-
cially dependent on the frequency, amplitude and polar-
ization of the external drive, the physical properties of
a quantum system may be engineered using laser radi-
ation. Such “Floquet engineering” has been extensively
studied in the context of both single-particle [7–17] and
many-body [18–29] models.

Here, we contemplate applications to the solid state,
i.e. Mott insulating transition metal oxides, for which
the orbital degrees of freedom play an essential role[30–
32]. We use many-body time-dependent perturbation
theory to derive general expressions for effective spin-
orbital model descriptions of multi-orbital Mott insula-
tors in the presence of laser irradiation. We further take
the effects of the doublon-holon (DH) hopping, i.e. the
bandwidth of excitations, into account in our perturba-
tion theory [33], which induces both real and imaginary
parts into the effective Floquet Hamiltonian projected
onto the spin-orbital subspace. The real part is inter-
preted as an effective spin-orbital model, and the corre-
sponding exchange interactions are renormalized by the
periodic driving, which allows for the Floquet engineer-
ing of the spin-orbital states. The imaginary part on the
other hand is related to the rate of generation of DH
pairs, and thus can partly capture the effects of heating.
We further apply our formalism to ferromagnetic YTiO3

and antiferromagnetic LaTiO3 based on first-principles
calculations. We find that the antiferromagnetic and fer-

romagnetic Mott insulators exhibit distinct responses to
the laser radiation, and the exchange interactions in these
compounds can be engineered to a large extent by mod-
erate electric fields.
Floquet spin model: We start the discussion by review-

ing the periodically driven Hubbard model:

H(t) = −
∑
〈ij〉σ

(
th e

i uij sinωt c†iσcjσ + h.c.
)

+ U
∑
i

n̂i↑n̂i↓ ,

(1)
where th is the hopping amplitude between sites i and
j, and U � th is the onsite Coulomb repulsion energy.
uij = eE0 · rij/ω, where |E0| denotes the magnitude of
the AC electric field with frequency ω, E(t) =E0 cosωt,
and rij = rj − ri is the displacement vector from lattice
site i to j. The effective Floquet spin Hamiltonian in
such a periodically driven half-filled Hubbard model has
been extensively discussed in references 25, 28, and 34.
It has been shown that the effective spin exchange inter-
action of the Floquet spin Hamiltonian associated with
the bond 〈ij〉 is renormalized due to the periodic driv-
ing, J〈ij〉 =

∑∞
n=−∞ 4t2hJ 2

n (uij)/(U−nω), which includes
contributions from all the virtual DH excitation processes
which absorb/emit n photons weighted by J 2

n (uij), where
Jn(uij) is the nth Bessel function of the first kind.

The Floquet spin model breaks down when the photon
energy ω (setting ~=1) is in resonance with the interac-
tion energy U , i.e. nω is around U . In such a resonance
regime, the periodic driving generates real DH pairs, and
the description of the system by the low-energy spin dy-
namics is no longer valid. The DH excitation spectrum
has a finite bandwidth ∼ 4

√
z − 1th (z is the coordina-

tion number) due to hopping of the DH pairs. As a result
of this, real DH pairs are generated as long as the fre-
quency nω (n∼O(1)) is within this excitation band. On
the contrary, when nω is outside the DH band, the DH
creation rate is tiny and the description of the system by
an effective Floquet spin Hamiltonian is still valid.

Following Ref. 33, a generic many-body state |Ψ〉t can
be approximately expressed as |Ψ〉t≈|Ψ0〉t+|Ψ1〉t, where
|Ψn〉t represents a state with n doubly occupied sites
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(doublons), and the n > 1 states have been neglected
as they make higher order contributions to the spin dy-
namics. The Schrödinger equation for the evolution of
the two components of the state reads

i∂t|Ψ0〉t = P̂0 Tt |Ψ1〉t ,
i∂t|Ψ1〉t = U |Ψ1〉t + Tt|Ψ0〉t + T̃t|Ψ1〉t , (2)

where Tt = −
∑
〈ij〉σ th e

i uij sinωt c†iσcjσ is the time-

dependent hopping operator shown in Eq. (1), P̂n is the
projector onto the subspace with n double occupancies,
and T̃t = P̂1TtP̂1 is the hopping operator projected onto
the single-doublon space. Replacing T̃t by its time av-

erage T = (ω/2π)
∫ 2π/ω

0
dt′T̃t′ , |Ψ1〉t can be explicitly

expressed as a function of |Ψ0〉t [33]. Plugging the ex-
pression of |Ψ1〉t (in terms of |Ψ0〉) back into the first
line of Eq. (2), one would obtain the time-dependent
Schördinger equation projected onto the |Ψ0〉 subspace.
If we further assume that the dominant DH hopping pro-
cesses are those which create and annihilate the DH pairs
at the same lattices sites leaving the background spin
configurations unchanged, then it follows that [33]

i∂t|Ψ0〉t =
∑
〈ij〉

∞∑
m,n=−∞

Hmn
ij (t)|Ψ0〉t, (3)

where Hmn
ij (t) = t2hf

mn
jiij(t)

∑
σσ′ c

†
jσ′ciσ′ c

†
iσcjσ gdh(nω),

and gdh(nω) = 〈Ψ0|c†jσciσ(U − nω + T̄ )−1c†iσcjσ|Ψ0〉
is the DH Green’s function, and fmnjiij(t) =

−ei(m−n)ωtJ−n(uij)Jm(uji). We further assume
that the motions of the doublons and holons are un-
correlated, which allows gdh to be expressed as the
convolution of the holon and doublon Green’s functions
gd and gh [33]: gdh(E) = −i

∫
dΩ/2π gh(Ω) gd(E − Ω).

The holon (doublon) Green’s function gh(d) is then
calculated using the retraceable path approximation
gh(d)(E) = 2(z − 1)/(E(z − 2) + z

√
E2 − 4(z − 1)t̄2h)

[33, 35], where t̄h= thJ0(uij) denotes the time-averaged
hopping amplitude [36]. In the regime ω � t2h/U ,
the leading order Floquet Hamiltonian is simply the
time-average of the right-hand-side of Eq. (3).

Floquet spin-orbital model: The previous discussion of
the periodically driven Hubbard model can be general-
ized to the case of multi-orbital Mott insulators with lo-
cal Kanamori interactions [37]

HK =U
∑
i,α

n̂iα↑n̂iα↓ + U ′
∑

i,α<β,σ,σ′

n̂iασn̂iβσ′

− JH
∑

i,α<β,σ,σ′

c†iασciασ′c
†
iβσ′ciβσ

+ JP
∑

i,α<β,σ

c†iασc
†
iα−σciβσciβ−σ , (4)

where U and U ′ are the intra-orbital and inter-orbital di-
rect Coulomb interactions. JH and JP denote the Hunds’

coupling and pair hoppings respectively; the sets of in-
dices {i, j}, {α, β}, {σ, σ′} denote, in turn, the lattice
sites, orbitals and spin degrees of freedom. As in the
case of the Hubbard model, the effect of the periodic
driving is manifested in the kinetic energy via the Peierls
substitution,

Tt =
∑

〈ij〉,αβ,σ

(
tiα,jβ e

iuij sinωtc†iασcjβσ + h.c.
)
, (5)

where tiα,jβ represents the hopping amplitude from or-
bital β at site j to orbital α at site i.

In the multi-orbital case, we also need to consider the
crystal-field splittings (HCF). In addition to the giant
t2g − eg splitting of typical perovskite transition-metal
oxides, there may be additional splittings within the t2g
and/or eg manifold due to various distortions [32, 38].
Throughout this paper we only consider the t2g orbitals.
Within the quasi-degenerate t2g levels we further include
the crystal-field splittings,

HCF =
∑
i

∑
α,β,σ

εi,αβ c
†
iασciβσ . (6)

Including all these terms, we find the total periodically
driven Hamiltonian as Ht = Tt +HK +HCF [39].

We consider the limit that the typical interaction en-
ergy scale is much greater than the hopping energy scale
and consider Tt as a perturbation to HK. In the non-
driven case, the low-energy physics is dominated by the
spin and orbital dynamics, which is well described by the
Kugel-Khomskii [32, 40] and similar spin-orbital models,
and can be derived using second-order perturbation the-
ory. We generalize that approach to the case with peri-
odic driving, and derive a time-dependent spin-orbital
model using time-dependent perturbation theory. We
consider the situation of one occupied electron at ev-
ery site in the ground state of the static system, then
make the assumption that U ′ = U − JH and JP =0 [31].
With such an assumption HK is rotationally invariant
and there are only two distinct multiplet energy levels:
Esinglet = U, for spin singlets, and Etriplet = U − 2JH
for spin triplets [31]. Therefore, we expand an arbitrary
many-body state |Ψ〉t as |Ψ〉t ≈ |Ψ0〉t + |Ψs

1〉t + |Ψt
1〉t,

where |Ψ0〉t represents the states without any double oc-
cupancy, and |Ψs

1〉 and |Ψt
1〉 denote the single-doublon

states with spin singlet and triplet configurations. As
discussed above, we neglect the excited states with more
than one doublon.

Time-dependent perturbation theory leads to the
Schrödinger equation projected onto the zero-doublon
subspace [33],

i∂t|Ψ0〉t =
( ∑
〈ij〉,mn,a

fmnij (t) Ĝa
jiij(nω) +HCF

)
|Ψ0〉t ,

(7)
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where fmnij (t) = −ei(m−n)ωtJm(uji)J−n(uij), Ĝ
a
jiij =∑

αβα′β′,σσ′ tiα,jβtjβ′,iα′ c†jβ′σ′ciα′σ′c
†
iασcjβσ g

a
dh, and the

superscript index “a” runs over {s, t}. gsdh and gtdh are
the doublon-holon Green’s functions in the spin singlet
and triplet configurations:

gsdh = 〈Ψ0|c†jβσciασ
P̂1s

U − nω + T̄ ss
c†iασcjβσ|Ψ0〉 ,

gtdh = 〈Ψ0|c†jβσciασ
P̂1t

U − 2JH − nω + T̄ tt
c†iασcjβσ|Ψ0〉 .

(8)

We have made the following approximations in deriving
Eq. (7)-(8). First, we only consider the hopping processes
which create and annihilate DH pairs at the same sites,
with a final spin-orbital configuration which is identical
to the initial configuration. Second we have neglected
the doublon-holon hopping terms which convert a spin
triplet to a singlet and vice versa. Lastly, we have time-
averaged over the hopping operator projected onto the
single doublon-holon space [33].

In order to calculate the holon/doublon Green’s func-
tion gh/gd in the multi-orbital case, we take the limit
that the crystal field splitting (within the t2g or eg or-
bitals) is much larger than the intersite exchange energy,
such that the occupied orbital at site i is uniquely de-
termined and is denoted as |1〉i. In this classical-orbital
regime, it is legitimate to introduce effective hoppings
between the orbitals |1〉i and |1〉j for the singlet and
triplet virtual excitations denoted as tsi1,j1 and tti1,j1:

(tsi1,j1)2 = (tti1,j1)2 =
∑
α(|ti1,jα|2 + |tj1,iα|2)/2. Then

the corresponding DH Green’s functions gsdh and gtdh can
be calculated using the single-orbital formalism discussed
above.

When ω is much larger than typical exchange en-
ergies, the leading-order Floquet spin-orbital Hamilto-
nian is simply the time-average of the right-hand-side of
Eq. (7). For t2g orbitals the Floquet Hamiltonian can
be rewritten in terms of the t2g spin and orbital opera-
tors. After taking the expectation values of the orbital
operators, one obtains

Hso
F =

∑
〈ij〉,n

(
J 2
n (uij)(γ1 + γ2)gsdh(nω)(Si · Sj −

1

4
)

− J 2
n (uij)(γ1 − γ2) gtdh(nω) (Si · Sj +

3

4
)
)
. (9)

It follows that the effective spin exchange interaction as-
sociated with bond 〈ij〉 is

J̄ij =
∑
n

J 2
n (uij)( (γ1 + γ2)gsdh − (γ1 − γ2)gtdh ) . (10)

where γ1 =
∑3
α,β,β′=1(tiα,jβ tjβ′,iα 〈Âjβ′β〉 + i ↔ j), and

γ2 =
∑3
α,α′,β,β′=1(tiα,jβ tjβ′,iα′ 〈Âjβ′β〉 〈Âiαα′〉 + i ↔ j)

and 〈Âiαα′〉 =
∑
σ〈c
†
iασciα′σ〉 is the expectation value of

the orbital operator Âiαα′ . The DH Green’s function in

the singlet (triplet) configuration g
s(t)
dh can be calculated

using the single-orbital formalism in the regime of strong
crystal-field splittings.

As in the case of a non-driven system, the Floquet ex-
change interaction J̄ij consists of two components: the
antiferromagnetic component from all the singlet virtual
excitations J̄AFM

ij =
∑
n J 2

n (uij)(γ2+γ1)gsdh, and the fer-
romagnetic component from all the triplet virtual excita-
tions J̄FM

ij = −
∑
n J 2

n (uij)(γ1−γ2)gtdh. Eq. (10) suggests
that the effective exchange interactions in periodically
driven multiorbital Mott insulators can be engineered by
the periodic driving.

If the |U − nω| and/or |U − 2JH − nω| [41] is
much greater than the typical hopping amplitudes, it is
straightforward to show that gsdh(nω)≈ 1/(U − nω) and
gtdh(nω)≈1/(U − 2JH − nω). Eq. (10) becomes

J̄ij =
∑
n

J 2
n (uij)

(
γ1 + γ2
U − nω

− γ1 − γ2
U − 2JH − nω

)
. (11)

In what follows we will show that ferromagnetic and an-
tiferromagnetic Mott insulators exhibit contrasting re-
sponses to laser radiation due to the analytic structure of
J̄ij shown in Eq. (11). On the other hand, if |U − nω|<
4
√
z − 1th or |U − 2JH − nω| < 4

√
z − 1th, gsdh or gtdh

has both real and imaginary parts. The non-vanishing
imaginary part of the Floquet spin-orbital Hamiltonian
(Im[Hso

F ]) implies the norm of the spin-orbital state |Ψ0〉
decays with time, and the rate of the DH generation is
proportional to Im[Hso

F ].
Application to orthorhombic titanates: We apply the

formalism discussed above to the orthorhombic per-
ovskite titanates YTiO3 and LaTiO3. YTiO3 is a fer-
romagnet Mott insulator with Curie temperature TC ≈
27 K [42], whereas LaTiO3 is a “G−type” antiferro-
magnetic Mott insulator (antiferromagnetic ordering in
all the three spatial dimensions) with Neel temperature
TN≈146 K [43]. By virtue of the unique orbital pattern
[44, 45], the exchange interactions along different spa-
tial directions in LaTiO3 are surprisingly isotropic [46].
Both compounds can be considered as perovskite oxides
with GdFeO3-type distortions. The crystal field split-
tings within the t2g orbitals ∼0.1− 0.4 eV [47–49], much
larger than the exchange energies. Hereafter we assume
that the orbital patterns are completely fixed by the crys-
tal field splittings and neglect orbital fluctuations.

In order to evaluate the hopping parameters (Eq. (5))
and the crystal-field splittings HCF, we carried out
bare density-functional-theory (DFT)[50, 51] calcula-
tions with vanishing magnetizations for LaTiO3 and
YTiO3. The converged Bloch functions are then pro-
jected onto the local t2g orbitals at the Ti sites to gen-
erate Wannier functions with the t2g symmetry. Re-
alistic non-interacting tight-binding models are then
constructed in the basis of the t2g Wannier functions
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[36, 52, 53]. We have also estimated the Hubbard repul-
sion using the linear-response method [54]. We find that
U = 3.83 eV, JH = 0.64 eV in YTiO3; while U = 3.82eV
and JH = 0.64 eV for LaTiO3. Using these parameters,
the nearest-neighbor spin exchange within the ab plane
Jab =−8.4 meV (minus sign means ferromagnetic), and
Jc=−0.5 meV along the c axis for YTiO3. We note that
the in-plane (inter-plane) ferromagnetic exchange inter-
action of YTiO3 is overestimated (underestimated) by
DFT. On the other hand, for LaTiO3 we get antiferro-
magnetic exchange interactions with Jab= 15.4meV and
Jc = 11.9meV, which are in good agreement with the
spin-wave measurements [46].

First we consider the Floquet exchange interactions ne-
glecting the bandwidth of the DH excitations as given by
Eq. (11). Plugging all the hopping, crystal-field, and in-
teraction parameters evaluated from DFT into Eq. (11),
the effective spin exchange interaction for the bond 〈ij〉
can be readily obtained. Neglecting the bandwidth of the
DH excitations, in Fig. 1(a)-(b) we plot the in-plane ef-
fective spin exchange interactions for LaTiO3 (Fig. 1(a))
and YTiO3 (Fig. 1(b)) in the parameter space (ω, Vij),
where Vij=uijω is the electric-field energy.

We notice that at relatively low frequencies and weak
electric fields, i.e. uij / 1, ω � U,U − 2JH, the effec-
tive ferromagnetic exchange interaction in YTiO3 is en-
hanced, but the antiferromagnetic exchange in LaTiO3 is
suppressed as Vij increases. Such opposite behaviors are
inherited from the analytic structure of Eq. (11). When
uij is small and ω � U,U − 2JH, the dominant pro-
cesses are those with a small number of photon emis-
sions/absorptions since the weight J 2

n (uij) ∼ u2nij for
small uij . Up to second order in uij , the effective spin
exchange interaction for a give bond can be simplified
as the static exchange interaction renormalized by a fac-
tor of J0(uij)

2 plus minor corrections. It turns out that
the correction to the ferromagnetic component is larger
in magnitude than that to the antiferromagnetic compo-
nent, which thus enhance/diminish the FM/AFM effec-
tive spin exchange as Vij increases [36].

More interesting behavior appears when the frequency
is on the same order of magnitude as U and is in be-
tween two virtual excitation levels. To be specific, if
(U − 2JH)/n2<ω <U/n1 (n1, n2∼1), it is convenient to
express the photon energy as ω= (U − 2JH)/n2 + δω2 =
U/n1 − δω1. It follows that the dominant photon ab-
sorption/emission processes are those with n=0, n1 and
n2.When (U − 2JH)/n2 < ω < U/n1 (n1, n2 ∼ 1), the
contributions from n1− and n2−photon processes are al-
ways positive in sign, which tend to enhance the anti-
ferromagnetic exchange and suppress the ferromagnetic
exchange [36]. This is clearly illustrated in Fig. (1)(a)-
(b) for U − 2JH < ω < U . For YTiO3 (Fig. 1(b)), the
ferromagnetic exchange at Vij =0 is suppressed by turn-
ing on the electric field, and becomes antiferromagnetic
at some critical value of V ∗ij(ω) ∼ 0.5 − 1.5 eV. On the

U/2

U-2JH
U

U
U/2-JH

U/2-JH

U/2

U-2JH U

FIG. 1: The in-plane Floquet spin exchange interactions for
LaTiO3 and YTiO3 as a function of the driving frequency ω
and the electric-field energy Vij . In (a)-(b), the bandwidth
of the virtual doublon-holon excitations is neglected. In (c)-
(d), the bandwidth of the virtual excitation spectra has been
taken into account. (a) and (c) are for LaTiO3, and (b) and
(d) are for YTiO3.

(a) (b)

FIG. 2: The imaginary part of the Floquet spin-orbital Hamil-
tonian projected to the bond 〈ij〉, (a) for LaTiO3 and (b)
YTiO3.

other hand, the antiferromagnetic exchange for LaTiO3

in Fig. (1)(b) is enhanced as Vij increases. Similarly,
if U/n1 < ω < (U − 2JH)/n2, it is straightforward to
show that periodic driving tends to enhance the mag-
nitude of the ferromagnetic exchange but suppress the
antiferromagnetic exchange, as shown in Fig. (1)(a)-(b)
for U/2<ω<U − 2JH.

Including the hopping within the DH subspace smears
out the sharp patterns of the effective exchange interac-
tions shown in Fig. (1)(a)-(b), and introduces imaginary
parts to the Floquet spin-orbital Hamiltonians when ω
is in resonance with the excitation bands. In Fig. 1(c)
and (d) we plot the real parts of the in-plane effec-
tive exchange interactions for YTiO3 and LaTiO3, tak-
ing into account the bandwidth of the excitation spec-
tra due to the DH hopping. The interesting features
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in Fig. 1(a)-(b) are mostly preserved in Fig. (1)(c)-(d),
except that the sign flip of the exchange interaction in
LaTiO3 (Fig. (1)(c)) has been completely smeared out
by DH hopping. We also plot the imaginary part of
Hso

F (Eq. (9)) projected to the in-plane bond 〈ij〉 for
both LaTiO3 ((a)) and YTiO3 ((b)). We have assumed
that the spin order is ferromagnetic (antiferromagnetic)
in YTiO3 (LaTiO3). Clearly Im[Hso

F ] has a broad peak
centered at U (U − 2JH) for the antiferromagnet (fer-
romagnet), and it can be seen that the imaginary part
increases with higher values of electric field energy in
both compounds. Moreover in LaTiO3 Im[Hso

F ] is signif-
icant between U/2 and U − 2JH, which invalidates the
description of the system by an effective spin(-orbital)
Hamiltonian in this frequency regime.

It is worthwhile here to discuss some of the heat-
ing effects that can occur in the system. First, even if
one is distant enough from the DH resonance, the spin-
orbital Floquet description can break down in exponen-
tially large (in ω/(t2h/U)) times due to photon absorp-
tion by spin-orbital degrees of freedom[55, 56]. Further-
more, one can also take the effect of phonons on heating
into account which we have neglected here. If the pho-
ton frequency is much greater than the highest IR active
phonon frequency (∼0.07−0.08 eV in titanates [57, 58]),
the leading-order effects of phonons are to modify the
hopping amplitudes and the crystal-field parameters at
a perturbative level through electron-phonon couplings.
Such minor modifications would not change the essential
results. .

Before concluding, we would like to comment on the
appropriate experimental tool to detect the Floquet spin
Hamiltonian. First, in order to drastically modify the
spin exchange interaction the Floquet parameter uij =
eE0 · rij/(~ω) has to be on the order of unity. If both
the driving frequency and electric-field energy are on the
order of 1 eV, then pump-probe measurements may be
the best tool to approach such strong field and high-
frequency regime. In order to measure the change of a
physical quantity, say, the magnetization, due to the laser
irradiation, one may have to combine pump-probe spec-
troscopy with other magneto-optical probes. A specific
proposal for the experimental detection of the Floquet
spin Hamiltonian in solids is however beyond the scope
of the present paper, and we leave it for future study.

To summarize, we have derived the Floquet spin-
orbital model for multi-orbital Mott insulators using
time-dependent perturbation theory, taking into account
the effects of the bandwidth of the DH excitations. We
have applied our formalism to orthorhombic perovskite
titanates YTiO3 and LaTiO3 based on first-principles
calculations. The formalism and methodology presented
in this paper can be directly applied to Slater/Mott insu-
lators with any kind of ordered spin-orbital ground state,
which may stimulate further exploration of Floquet en-
gineering of magnetism in strongly correlated transition-

metal oxides.
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[12] P. Delplace, A. Gómez-León, and G. Platero, Phys. Rev.

B 88, 245422 (2013).
[13] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys.

Rev. B 82, 235114 (2010).
[14] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin,

Phys. Rev. X 3, 031005 (2013).
[15] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H.

Lindner, Phys. Rev. X 6, 021013 (2016).
[16] Y. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik,

Science 342, 453 (2013).
[17] F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner,

Y. Lee, P. A. Lee, and N. Gedik, Nature Physics 12, 306
(2016).

[18] D. Fausti, R. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.
Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cav-
alleri, science 331, 189 (2011).

[19] R. Mankowsky, A. Subedi, M. Först, S. Mariager,
M. Chollet, H. Lemke, J. Robinson, J. Glownia,
M. Minitti, A. Frano, et al., Nature 516, 71 (2014).

[20] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser,
A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò,
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