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Time-reversal symmetry suppresses electron backscattering in a quantum-spin-Hall edge, yielding
quantized conductance at zero temperature. Understanding the dominant corrections in finite-
temperature experiments remains an unsettled issue. We study a novel mechanism for conductance
suppression: backscattering caused by incoherent electromagnetic noise. Specifically, we show that
an electric potential fluctuating randomly in time can backscatter electrons inelastically without
constraints faced by electron-electron interactions. We quantify noise-induced corrections to the dc
conductance in various regimes and propose an experiment to test this scenario.

Introduction. From a technological perspective, the
main promise of two-dimensional topological insulators
(2D TIs) stems from their edge states, which are pro-
tected by a combination of symmetry and topology [1–3].
The ‘helical’ low-energy edge spectrum consists of degen-
erate counterpropagating electron states with opposite
spins as required by time-reversal symmetry. Kramers
orthogonality of the two states prevents elastic backscat-
tering by a static potential, in turn yielding a quantized
zero-temperature conductance G = G0 ≡ e2/h per edge.
Perfect quantization has, however, so far eluded experi-
mental observation [4–12].

In practice, it was realized early on that many in-
elastic effects circumvent band-topology constraints and
can hinder the edge-mode propagation by introducing
backscattering [13–24]. These backscattering mecha-
nisms reflect the fact that time-reversal symmetry al-
lows non-degenerate counterpropagating states to have
overlapping spin wave functions. Such non-zero over-
lap occurs generically in systems with fully broken spin-
rotation symmetry. Indeed, it is well known that struc-
tural or bulk inversion asymmetry in 2D TIs may induce
nontrivial edge spin texture in momentum space [18];
that is, the edge-state spin quantization axis “rotates” as
a function of momentum [25] as sketched in Fig. 1a. The
necessary energy transfer for backscattering was consid-
ered to originate from thermal itinerant edge electrons or
phonons, or fluctuating localized spins. Apart from the
latter, the backscattering rate was found to be strongly
suppressed at low temperatures: Electron-electron inter-
actions perturbatively produce a conductance correction
δG ≡ G0 − G ∝ T 4 at low temperatures [18, 23, 26],
while phonon scattering is even more suppressed. Local-
ized spins [27] impart a stronger effect in the perturbative
limit, δG ∝ ln2 T , but their presence need not be a uni-
versal feature of all 2D TI materials.

In this paper we show that a time-dependent scalar
potential might dominate the backscattering in practice.
This mechanism is expected to be ever-present in all ma-
terials in the form of electrical noise and is almost free

from phase-space constraints.
We start from a qualitative derivation of our main re-

sult, the estimate of the decrease δG in the edge dc con-
ductance. Spin texture in momentum space makes the
edge electron density operator off-diagonal in the basis of
right and left movers [28]. Coupling the total density to a
scalar potential U(x) thus produces an effective backscat-
tering matrix element VpR→p′L that, for small energy
transfer v|p+ p′|, vanishes as VpR→p′L = v

D (p+ p′)U2kF .
(We use ~ = kB = 1 units.) Here p, p′ are momenta
measured from the Fermi points ±kF and U2kF is the
2kF Fourier component of the potential; v is the edge
mode velocity andD/v is the momentum scale over which
the spin rotates; see Fig. 1a. For a potential U fluctu-
ating harmonically with frequency ω, the backscatter-

ing rate is Γ = 2πν ω
2

D2 |U2kF |2, where ν = 1/2πv is the
edge density of states per length. When a bias voltage
V is applied across the edge, νeV states contribute to
the current. The backscattered current at low temper-

ature thus reads δIω = 2πe2ν2 ω2

D2 |U2kF |2V . One needs
to integrate δIω over the full noise spectrum. A thermal
noise source at temperature T can only emit photons of
frequencies ω . T , which cuts off the integration over
ω. For low-frequency (ω � T ) noise caused by a single
fluctuating electric dipole, modeled as a two-level system
(TLS) with relaxation rate τ−1 � T , the noise spectrum
is Lorentzian and the integration yields

δG ∼ G0
T |U2kF |2

D2τv2
, (1)

which is one of our main results. The refined version of
this equation appears in Eq. (11). On a long edge, many
dipoles contribute incoherently to δG, leading to resistive
edge transport. The long-edge resistance is obtained by
summing Eq. (1) over impurities and averaging over τ .
Assuming a distribution of relaxation times P (τ) ∼ 1/τ
and a short-time cutoff τ0, the resistance becomes

R ∼ LnG−1
0

T |U2kF |2

D2τ0v2
, (2)
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Figure 1. (a) Spin texture in momentum space. Over a small
energy interval E, the spin of an eigenstate rotates by a small
angle E/D. (b) A time-dependent scalar potential induces
backscattering when such spin textures exist. The potential
can arise from a fluctuating two-level system near the edge
or from an ac voltage ∼ cosω0t applied by a nearby gate;
Eqs. (11) and (14) predict the respective decrease in two-
terminal dc conductance arising from these sources. Note that
an applied ac voltage provides a controlled way of probing the
spin texture required in our scenario.

with L the length of the edge and n the number of dipoles
per length. Equations (1) and (2) are valid at ‘high’
temperatures where the dipoles are not frozen. In this
regime the mechanism does not lead to strong temper-
ature dependence of R, unlike conventional backscatter-
ing processes arising for example from electron-electron
interactions on the edge.

Model and derivation. The Hamiltonian of a clean
helical edge is [18]

H0 =

∫
dk

2π
(εkc

†
kRckR + ε−kc

†
kLckL) , (3)

with εk = vk−µ the spectrum linearized about the chem-
ical potential µ = vkF . We stress that H0 does not as-
sume spin conservation and allows for a spin texture in
momentum space. The spin of an eigenstate follows from
the unitary transformation(

ck↑
ck↓

)
= Bk

(
ckR
ckL

)
(4)

that relates fermions with spin ↑, ↓ to left and right
movers. Unitarity and time-reversal symmetry impose
B†k = B−1

k and Bk = B−k.
Consider next a time-dependent scalar potential that

couples to the edge electron density ρ =
∑
σ=↑,↓ ψ

†
σψσ:

HU (t) =

∫
dxρ(x)U(x)w(t) . (5)

We assume here that the noise-induced potential has sep-
arable dependence on position and time, parametrized by
U(x) and w(t), respectively. This assumption certainly
holds for telegraph noise (two-level-system noise) from a
single impurity, which we consider later. In the presence

of HU (t), time-reversal symmetry is clearly broken, but
is maintained in a time-averaged sense.

Using Eq. (4) to express the density ρ in the L/R-basis,
we see that HU does not conserve the number of left and
right movers. In momentum space, the off-diagonal part
of Eq. (5) reads

HU,RL(t) = w(t)

∫
dk

2π

dk′

2π
[B†k′Bk]10Uk−k′c

†
k′RckL + h.c. ,

(6)
where [M ]10 denotes the off-diagonal component of
the 2x2 matrix M . Equation (6) gives rise to
a non-zero backscattering current operator δI(t) =
− 1

2ed(NR −NL)/dt. We evaluate the average backscat-
tering current 〈δI(t)〉 using the Kubo formula [29], treat-
ing HU,RL as a time-dependent perturbation. We find

〈δI(t)〉 = e

∫
dk

2π

dk′

2π
|[B†k′Bk]10|2|Uk−k′ |2(f−kL − fkR)

(7)

× 2Re

∫ 0

−∞
dt′e−i(vk+vk′+i0)t′w(t)w(t′ + t) .

Here we introduced Fermi functions fkα = f(αvk−µα) =

〈c†kαckα〉 with f(E) = (eE/T + 1)−1; we identify here
R ≡ + and L ≡ −. Treating backscattering as a weak
perturbation, we use unperturbed Fermi functions where
the bias voltage V is incorporated by setting chemical
potentials µR,L = µ ± 1

2eV for right and left movers.
As a sanity check, static perturbations with w(t) =

constant impose k = −k′ and thus [B†k′Bk]10 = 0 in
Eq. (7), implying that backscattering does not arise. We
will next take the linear-response limit eV � T , where
f−kL − fkR ≈ f(vk − µ)[1− f(vk − µ)]eV/T .

The time-averaged backscattered current, 〈δI〉 =

T −1
∫ T

0
dt 〈δI(t)〉 with T → ∞, is determined by

the Fourier transform of the correlator w(t)w(t′ + t).
In terms of the power spectral density S(ω) =∫∞
−∞ dt′eiωt

′
w(t)w(t′ + t), the correction to the dc con-

ductance δG = d〈δI〉/dV can be written as

δG = e2

∫
dk

2π

dk′

2π
|[B†k′+kFBk+kF ]10|2 (8)

× |Uk+k′+2kF |2T−1f(vk)[1− f(vk)]S(vk − vk′) .

Since S(ω) is non-negative, the noise always decreases
the dc edge conductance, i.e., δG > 0.

The integrals in Eq. (8) cannot be explicitly evaluated
without specifying the function Bk that encodes the spin
texture. However, tractable results can be obtained when
the vector dk specifying the texture via Bk = exp idk · σ
has a slowly varying magnitude dk and a fixed direction,
dk = dkn̂. The former assumption can be used in Eq. (8)

to expand [B†k′+kFBk+kF ]10 ≈ n⊥v(k − k′)/Dk+kF with
n⊥ = [n̂ · σ]10. Here Dk+kF = v/∂kdk+kF defines the
typical energy scale of the spin rotation (see Fig. 1). The
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expansion is valid when the noise spectrum is peaked at
low frequencies so that v(k − k′) � Dk+kF in the rele-
vant region of integration in Eq. (8). Further assuming
v(k − k′), T � µ, we obtain

δG ≈ G0

v2
|U2kF |2n2

⊥D
−2

∫
dω

2π
ω2S(ω) , (9)

whereD = DkF . Equation (9) is valid for any µ/D. How-
ever, close to the Dirac point, kF = 0, the spin texture
becomes quadratic (because of the property dk = d−k
following from time-reversal symmetry) with a curva-
ture k−1

0 . When, max(µ, T ) � vk0, one can replace
D−1 → max(µ, T )/(vk2

0) in Eq. (9).
Telegraph noise from a charge puddle. The con-

ductance correction δG in Eq. (9) depends on the noise
spectrum. A realistic source is telegraph noise caused by
a charge puddle [20] with fluctuating charge. We model
the puddle as a quantum dot that creates a local edge
electric potential W (x, t) dependent on the dot’s con-
figuration at a given time t. We assume that the dot
has a sizable charging energy EC & T so that only two
charge states need to be retained. To simplify our de-
scription we will further ignore different states of the
puddle within the same charge sector, which is justified
if noise predominantly arises from electric dipole fluctua-
tions contributed by different charge states. In this case,
the puddle acts as a two-level system akin to a fluctu-
ating dipole, [30] and its potential admits the separable
form W (x, t) = U(x)w(t) employed in Eq. (5). Here
U(x) is the effective dipole potential (the difference in
the potential in the two charge states) and w(t) repre-
sents telegraph noise.

The charge puddle’s classical noise spectrum is given
by [31]

S(ω) = p0(1− p0)
2τ

1 + ω2τ2
, (ω � T ) , (10)

where τ−1 is the relaxation rate of the excited state and
p0 is the probability for the TLS to be in its ground state.
For a thermal population we have p0 = 1/(1 + e−∆/T )
with ∆ = 2EC |{Ng} − 1

2 | the energy difference between
the puddle’s excited and ground states; {. . . } denotes
the positive fractional part while Ng is a dimensionless
parameter determined by the puddle’s electrostatic en-
vironment (e.g., a neighboring puddle) and thus varies
between different TLSs. We treat Ng as a uniformly dis-
tributed random variable. Note, however, that Ng de-
pends linearly on the edge chemical potential µ, which
is tunable by a global gate. Therefore, due to the factor
p0(1 − p0) in Eq. (10), we expect to see temperature-
broadened resonances in δG of a short edge as the gate
voltage is tuned; see Eq. (11) below. Gate-induced con-
ductance fluctuations are consistent with experiments in
existing 2D TI candidate materials [4, 11, 32].

The TLS noise spectrum, Eq. (10), vanishes slowly at
large frequencies, S(ω) ∼ 1/ω2, resulting in a divergent

integral (9) [33]. Our derivation of Eq. (9) starting from
Eq. (5) treated the noise source w as classical, which re-
stricts the validity of Eq. (9) to low frequencies, ω � T .
If the dominant contribution to the integral comes from
higher frequencies, as is the case for the noise spec-
trum (10), one must use an equation that is valid also at
higher frequencies. Such an equation is obtained from a
proper quantum derivation that treats w as an operator,
see Ref. [30]. Equation (9) generalized to higher frequen-

cies is obtained by replacing S(ω) → (ω/2T )2

sinh2(ω/2T )
S(ω) in

that equation. Using this quantum form in Eq. (9) yields

δG = G0
2π

3v2
|U2kF |2n2

⊥
T

D2τ
p0(1− p0) , (11)

in the limit τ−1 � T . This is the more refined version of
Eq. (1) derived in the introduction.

The temperature-dependence of Eq. (11) arises from
three factors: the puddle occupation number p0, the fac-
tor T coming from the sum over frequencies contributing
to backscattering, and finally from the so-far unspecified
TLS relaxation rate τ−1. The relaxation time is a sum of
two microscopic times, τ = τesc + τe−e: the time τesc of
elastic electron escape from the puddle and the inelastic
energy relaxation time τe−e. The former is independent
of temperature, while the latter for charge puddles varies
as [22] τ−1

e−e ∝ T 2/δ where δ is the puddle level spac-

ing. At temperature much higher than
√
δτ−1
esc one has

τ−1
e−e � τ−1

esc so that τ−1 ≈ τ−1
esc is almost independent of

temperature. The conductance correction, Eq. (11), has
then rather weak temperature-dependence. We focus on
this limit τ−1 ≈ τ−1

esc hereafter.
Long edge. Equation (11) is valid for a single fluctu-

ating TLS which is the relevant case for a short edge.
Next, we shall consider the effects of multiple TLSs
near the edge, which is appropriate for a long edge.
The correction to conductance, Eq. (11), due to a sin-
gle TLS can be translated into an added small resis-
tance δR = δG/G2

0 � G−1
0 to the total edge resistance,

R ≈ G−1
0 + δR. Assuming uncorrelated fluctuations of

the TLSs, we can neglect interference contributions [34];
the resistance of a long edge is then R ≈

∑
i δRi, where

δRi is the contribution from the ith TLS. Summing over
i amounts to ensemble-averaging Eq. (11) over the ran-
dom parameters, in particular Ng. The average is domi-
nated by those puddles whereNg is close to a half-integer,
∆� T . Interpreting τ−1 and |U2kF |2 as their typical val-
ues at {Ng} ≈ 1/2, we find therefore an edge resistance

R = LnG−1
0

π|U2kF |2

3v2
n2
⊥

T

D2τ

T

Ec
tanh

Ec
2T

, (12)

where n is the one-dimensional impurity density [35]
and L is the length of the edge. The factor
(2T/EC) tanh Ec

2T = 4〈p0(1−p0)〉Ng is the fraction of TLS
for which T � ∆. The noise time scale τ can be esti-
mated by evaluating the escape rate of an electron from
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one charge puddle to a neighboring puddle [see comments
below Eq. (11)]. Since {Ng} ≈ 1/2, tunneling is resonant
and its rate is equal to the level splitting in the two-
puddle problem. We can use the WKB approximation
since the puddles are typically large [22]. This estimate
gives τ−1 ∼ δe−d/Λ, where δ is the puddle level spacing,
Λ is the penetration depth of a low-energy electron into
the bulk and d is the average distance between the pud-
dles. In the limit T � Ec the resistance, Eq. (12), is lin-
ear in temperature, while at low temperatures R ∝ T 2.
Strictly speaking, at T � Ec one should include more
charge states in our noise model. As long as τ−1 � Ec,
the puddle charge takes discrete well-defined values and
the noise has the Lorentzian form, Eq. (10). The gen-
eralization of the prefactor p0(1 − p0) in that equation
to many levels remains T -independent at high tempera-
tures.

1/f noise. Electronics ubiquitously exhibit 1/f noise.
We therefore discuss the resulting resistance for this case,
assuming that the noise source is extensive. Let us first
discuss in which frequency range the noise from a collec-
tion of charge puddles can have a 1/f form. In Eq. (12)
we took τ−1 ∼ δe−d/Λ with d the puddle-puddle dis-
tance. Assuming that the random variable d is dis-
tributed uniformly, the corresponding distribution of re-
laxation times, P (τ) ∼ 1/τ , is dominated by short times
τ ∼ 1/δ. Further assuming δ � T , the resistance aver-
aged over puddle positions then becomes

R ∼ LnG−1
0

Tδ|U2kF |2

D2v2
n2
⊥ , (13)

in the high-temperature limit T � Ec while R ∝ T 2 at
T � Ec. By averaging Eq. (10) over τ with the distri-
bution 1/τ , the resulting noise spectrum is 1/ω at low
frequencies, ω � δ, but 1/ω2 at high frequencies ω � δ.
When δ � T , the high-frequency part gives the dominant
contribution to Eq. (13). This is because the transition
matrix element becomes small at low energy transfers,
[B†k′+kFBk+kF ]10 ≈ δ/D when v(k′ − k) ≈ δ � D; see
discussion above Eq. (9).

Let us next discuss the more generic 1/fγ noise with-
out specifying its microscopic origin. For 1/fγ noise
(0 < γ < 3) with a sharp high-frequency cutoff Ω � T
we find R ∼ G−1

0 (Ω/D)2n2
⊥S0|U2kF |2/v2 with an γ-

dependent numerical coefficient. This result is obtained
from Eq. (8) by taking a spectrum S(ω) = |ω|−γΩγ−1S0,
defined for |ω|< Ω.
Discussion. The noise-induced backscattering under-

lying Eq. (8) relies on the presence of a momentum-space
spin texture of the edge state. Although band theory
predicts the existence of such a texture [36], its exper-
imental detection is so far absent. As a simple experi-
mental probe of the spin texture, we suggest creating a
time-dependent “noise potential” artificially by an exter-
nal gate; see Fig. 1b. With ac voltage V0 cosω0t applied
to the gate, we have U(x) = V0u(x) and w(t) = cosω0t

in Eq. (5). The dimensionless function u(x) is geometry-
dependent and can be in principle found by solving the
Poisson equation. Using Eq. (9) with S(ω) obtained from
w, we find in the limit ω0 , T � D, µ,

δG = G0
ω2

0

4D2v2
V 2

0 |u2kF |2n2
⊥ . (14)

Remarkably, by the application of an ac gate voltage,
one may create an effective backscattering potential ∝
ω0V0u2kF n⊥/D on the helical edge, as long as a spin tex-
ture exists. Quadratic dependence of δG on gate voltage
and frequency thus constitutes a clear experimental sig-
nature of a spin texture in a helical edge. We note that
for large kF = µ/v it may be difficult in practice to create
a sharp enough potential that induces substantial u2kF .
This difficulty can be avoided if the Dirac point is not
buried [12, 37] and one can tune µ with a global gate
to a smaller value. In this limit there is an additional
µ-dependence in δG stemming from D−2 ∝ µ2; see dis-
cussion below Eq. (9).

Let us finally estimate parameters of our noise models
and discuss the size of the effect. For charge puddles,
as was mentioned in the context of Eq. (13), the dom-
inant contribution to resistance comes from close pairs
of puddles for which τ−1 ≈ δ. For HgTe, δ ≈ α2∆b

with α = e2/4πεv and ∆b is the band gap [38]. For a
ball-park estimate of U2kF , we can use the charging en-
ergy Ec ∼ αv/l of a charge puddle of size l. Assuming
a short-range potential then gives U2kF ∼ vα. Taking
n⊥ ∼ 1, we obtain the final estimate for the resistance

in Eq. (13), R ∼ LnG−1
0

α4T∆b

D2 . In HgTe, the interaction
constant α ≈ 0.3 is not very large and near-edge puddles
are possibly rare, n ∼ 1/µm. Therefore, in HgTe fluc-
tuating dipoles (modeled as TLSs) in the dielectric may
give a larger source of resistance [30]. This contribution is

R ∼ 1
G0

LT
v αNe

−4d0kF T 2

D2 tan δ, where N is the number of
TLS in the dielectric and tan δ is its loss tangent; d0 is the
distance of the dielectric from the edge [39]. For exam-
ple, a SiO2 dielectric of size 2×2×0.1µm3 (L = 2µm) at
temperature T = 1K hosts [40] N ∼ 2×104 contributing
TLSs and has a loss tangent [41] tan δ ∼ 10−3. Assum-
ing T/D ∼ 1 and focusing on the vicinity of the Dirac
point, kF d0 . 1, the corresponding resistance is signifi-
cant, R ∼ G−1

0 , even for a short L = 2µm edge. For even
shorter edges the dominant contribution may come from
gate noise, see Eq. (14).

Our main results, Eqs. (11)–(12), and the above esti-
mates were derived for a specific model of a fluctuating
dipole in thermal equilibrium. We emphasize that these
results generalize to the case of a non-equilibrium noise
source. An important example is when the effective noise
temperature is much higher than the system tempera-
ture. The result for that case can be obtained by taking
the high temperature limit in Eqs. (11)–(12).

The mechanism of noise-induced backscattering may
play a role in broader settings in materials where elas-
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tic backscattering is suppressed, for example in graphene
or in 3D topological insulators. Future studies of noise
in such context may extend to topics such as spin relax-
ation [42] and dephasing of quasiparticle interference [43].
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