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We study the band topology and the associated linking structure of topological semimetals with nodal lines
carrying Z2 monopole charges, which can be realized in three-dimensional systems invariant under the combi-
nation of inversion P and time reversal T when spin-orbit coupling is negligible. In contrast to the well-known
PT -symmetric nodal lines protected only by π Berry phase in which a single nodal line can exist, the nodal lines
with Z2 monopole charges should always exist in pairs. We show that a pair of nodal lines with Z2 monopole
charges is created by a double band inversion (DBI) process, and that the resulting nodal lines are always linked
by another nodal line formed between the two topmost occupied bands. It is shown that both the linking struc-
ture and the Z2 monopole charge are the manifestation of the nontrivial band topology characterized by the
second Stiefel-Whitney class, which can be read off from the Wilson loop spectrum. We show that the second
Stiefel-Whitney class can serve as a well-defined topological invariant of a PT -invariant two-dimensional (2D)
insulator in the absence of Berry phase. Based on this, we propose that pair creation and annihilation of nodal
lines with Z2 monopole charges can mediate a topological phase transition between a normal insulator and a
three-dimensional Stiefel-Whitney insulator (3D SWI). Moreover, using first-principles calculations, we pre-
dict ABC-stacked graphdiyne as a nodal line semimetal (NLSM) with Z2 monopole charges having the linking
structure. Finally, we develop a formula for computing the second Stiefel-Whitney class based on parity eigen-
values at inversion invariant momenta, which is used to prove the quantized bulk magnetoelectric response of
NLSMs with Z2 monopole charges under a T -breaking perturbation.

PACS numbers:

Introduction.— Topological semimetals [1–38] are novel
states of matter whose band structure features gap-closing
points or lines. Such gapless nodal points or lines are pro-
tected by either crystalline symmetry [4–17] or topological
invariants [18–38]. The nodal point (Weyl point) in a Weyl
semimetal [31–38] is a representative example of the latter
case. Due to the quantized monopole charge, Weyl points al-
ways exist in pairs [31–34]. Moreover, pair creation and an-
nihilation of Weyl points can mediate topological phase tran-
sitions between a normal insulator (NI) and a topological in-
sulator in three dimensions (3D) [31–33, 37–40]. Since the
origin of the monopole charge is the Berry curvature of com-
plex electronic states, breaking either time reversal T [31–
33] or inversion P [35–38] is a precondition to host a Weyl
point [34].

However, recent theoretical studies have found that, in
the presence of P and T symmetries, a nontrivial monopole
charge can exist, carried by a nodal line (NL), when spin-
orbit coupling is negligibly weak [18–23]. Here the monopole
charge is a Z2 number originating from the topology of real
electronic states [18–20, 23], which is clearly distinct from
the integer monopole charge of Weyl points originating from
complex electronic states. In fact, recently, spinless fermions
in PT -symmetric systems have received great attention due
to the discovery of semimetals with NLs protected by π
Berry phase [23–26], appearing in various forms including
rings [41–49], crossings [50–53], chains [54–56], links [57–
64], knots [63–65], nexus [66–68], and nets [69–71]. How-
ever, all the NL belonging to this class do not carry a Z2

monopole charge. Because of this, such a NL can exist alone
in the Brillouin zone (BZ), which can disappear after shrink-
ing to a point [23]. No candidate material has been predicted
to host Z2-nontrivial NLs (Z2NLs) yet. Although there are
preceding theoretical studies on Z2NLs [21–23], the generic
feature of the associated band structure topology, which is
useful to facilitate material discovery, has not been thoroughly
studied.

In this work, we study topological characteristics unique
to a nodal line semimetal (NLSM) with Z2 monopole
charges and propose the first candidate material, ABC-stacked
graphdiyne. In particular, we describe the mechanism for cre-
ating Z2NLs and the linking structure between them, which
originates from the underlying global topological characteris-
tics of real electronic states represented by the second Stiefel-
Whitney (SW) class. The linking structure exists between
a Z2NL near the Fermi energy EF and another NL below
EF , similar to the linking structure predicted in 5D Weyl
semimetal recently [72]. This demonstrates that, in contrast
to the common belief, the topological property of NLSM is
determined not only by the local band structure near crossing
points at EF but also by the global topological structure of all
occupied bands below EF .

Band crossing in PT -invariant spinless fermion systems.—
Z2-trivial NLs can be described as follows [23, 26]. Since
(PT )2 = +1 in the absence of spin-orbit coupling, PT op-
erator can be represented by PT = K where K denotes
the complex conjugation. In this basis, the PT invariance of
the Hamiltonian, PTH(k)(PT )−1 = H(k), requires H(k)
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FIG. 1: (a) Band structure near a nodal line (NL) with zero Z2

monopole charge. (b) Band structure near a NL carrying a unit Z2

monopole charge (Z2NL) linked with another nodal line (NL∗) be-
low the Fermi level (EF ). (c) Atomic structure of ABC-stacked
graphdiyne. (d) Band structure of ABC-stacked graphdiyne where
thick orange lines indicate degenerate NLs above and below EF . (e)
The shape of two Z2NLs (red loops) at EF (E = 0) linked with a
NL∗ below EF (yellow line) in ABC-stacked graphdiyne.

to be real. Then the effective two-band Hamiltonian near
a band crossing point can be written as H(k) = f0(k) +
f1(k)σx+f3(k)σz,where σx,y,z are the Pauli matrices for the
two crossing bands and f0,1,3(k) are real functions of momen-
tum k=(kx, ky, kz). Because closing the band gap requires
only two conditions f1,3(k) = 0 to be satisfied whereas there
are three independent variables kx,y,z , the generic shape of
band crossing points is a line.

On the other hand, to describe Z2NLs, one needs to con-
sider a four-band Hamiltonian as first proposed in [23]. When
the reality condition is imposed, H(k) can include three 4×4
anticommuting matrices, which indicates that a 3D massless
Dirac fermion can exist. The Dirac point is stable against the
gap opening because the mass terms, which are imaginary, are
forbidden. However, there are other allowed real matrix terms
that can deform the Dirac point into a NL. For instance, let us
consider the following Hamiltonian introduced in [23],

H(k) = kxσx + kyτyσy + kzσz +mτzσz, (1)

where τx,y,z and σx,y,z are Pauli matrices. The energy eigen-

values are E = ±
√
k2x + (ρ± |m|)2 where ρ =

√
k2y + k2z .

One can see that the conduction and valence bands touch
along the closed loop (a Z2NL) satisfying kx = 0 and ρ =
|m|. Moreover, two occupied bands cross along another line
along ρ = 0 (NL∗), which is linked with the Z2NL. Because
of this linking, the Z2NL is stable and distinct from trivial
NLs. As m → 0, the linking requires that the Z2NL shrinks
to a Dirac point. As m becomes finite after sign-reversal, the
size of the Z2NL increases again. It can never disappear by
itself. Because a single Z2NL is stable, only a pair of Z2NLs
can be created by band inversions.
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FIG. 2: (a) Evolution of band structure during a double band in-
version (DBI). Red (Orange) points and lines indicate the crossing
between the conduction and valence bands (two occupied bands). ±
indicate the inversion eigenvalues at the Γ point. (b) A variant of BDI
process realized in graphdiyne. Due to the three-fold rotation sym-
metry, both the valence and conduction bands are degenerate along
the kz axis, thus NL∗ exists before Z2NLs are created.

Z2NLs in ABC-stacked graphdiyne.— Our first-principles
calculations predict that ABC-stacked graphdiyne realizes
Z2NLs with the linking structure. ABC-stacked graphdiyne
is an ABC stack of 2D graphdiyne layers composed of sp2-
sp carbon network of benzene rings connected by ethynyl
chains. [See Fig. 1(c).] Recently, Nomura et. al. [73] theo-
retically proposed ABC-stacked graphdiyne as a NLSM. Here
we show that the NLs in this material are Z2NLs. Consistent
with [73], we find NLs occurring off the high-symmetry Z
point of the BZ. While the electronic band structure displays
band gap along the high-symmetry lines as shown in Fig. 1(d),
the valence and conduction bands cross off the high-symmetry
k-points along a pair of closed NLs colored in red in Fig. 1(e).
Additionally, we find that two topmost occupied bands form
another NL [the orange line in Fig. 1(e)], which pierces the
red NLs, manifesting the proposed linking structure. Interest-
ingly, the effective four-band Hamiltonian describing ABC-
stacked graphdiyne near EF is identical to Eq.(1) [73], indi-
cating the generality of our theory.

Double band inversion (DBI).— Let us illustrate a generic
mechanism for a pair creation of Z2NLs in inversion symmet-
ric systems, which is comprised of consecutive band inver-
sions, dubbed a double band inversion (DBI). For concrete-
ness, we describe a DBI by using the Hamiltonian in Eq. (1)
after the replacement kz → |k|2 − M . The evolution of
the band structure during the DBI is illustrated in Fig. 2(a)
as a function of the parameter M . As we increase M from
M < −|m|, the first band inversion occurs at M = −|m| be-
tween the top valence and bottom conduction bands, creating
a trivial NL. Then, the inversion at M = 0 between two occu-
pied (unoccupied) bands generates another NL below (above)
EF , which we call NL∗. The last band inversion at M = |m|
between two inverted bands near EF splits the trivial NL into
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two Z2NLs linked by the NL∗ below EF [Fig. 2(a)]. During
the DBI, each occupied (unoccupied) band crosses both of two
unoccupied (occupied) bands, which explains why the mini-
mal number of bands required to create a Z2NL is four. In
ABC-stacked graphdiyne, both valence and conduction bands
are doubly degenerate along the high-symmetry kz axis due
to three-fold rotation symmetry, thus NL∗ exists from the be-
ginning. In such a system, a single band crossing immediately
inverts two occupied and two unoccupied bands having oppo-
site parities, generating a Z2NL pair as shown in Fig. 2(b). In
noncentrosymmetric systems, Z2NL pair creation occurs in a
similar manner, that is, by splitting a trivial NL into a Z2NL
pair which are linked with another NL below EF as described
in [75].
Z2 monopole charge, linking number, and the second

Stiefel-Whitney class.— Here we give a formal proof for the
equivalence between the Z2 monopole charge and the link-
ing number, based on the correspondence between the Z2

monopole charge and the second Stiefel-Whitney (SW) class
implied by K-theory [74].

The Z2 invariant was originally defined in [23] as follows.
First, we take real occupied states by imposing PT |unk〉 =
|unk〉. Then we consider a sphere surrounding a NL, which
is divided into two patches (the northern and southern hemi-
spheres) overlapping along the equator as shown in Fig. 3(a).
One can find smooth real states |uNnk〉 (|uSnk〉) on the northen
(southern) hemisphere. On the overlapping circle, |uN,Snk 〉
are connected by a smooth transition function tNS(k) ∈
SO(Nocc) in a way that |uSnk〉 = tNSmn(k)|uSmk〉, where Nocc
denotes the number of occupied bands. Let us note that, since
the real occupied states are orientable on a sphere, transition
functions can be restricted to SO(Nocc) [75]. The homotopy
group π1(SO(Nocc > 2)) = Z2 indicates that there is a Z2-
type obstruction for defining real smooth state on the sphere,
which is nothing but theZ2 monopole charge of NLs. Because
π1(SO(2)) = Z, the winding number of tNS(k) is an inte-
ger invariant when Nocc = 2. In this case, the Z2 monopole
charge is defined by the parity of the winding number.

Now we make a connection between the Z2 monopole
charge and the second SW class w2. w2 characterizes the ob-
struction to lifting transition functions of real occupied states
to their double covering group [97–99]. When w2 = 0
(w2 = 1), the lifting is allowed (forbidden). For simplic-
ity, let us first consider the case with Nocc = 2 so that the
transition function tNS(k) = exp(iθ(k)σy), where σx,y,z
are the Pauli matrices for two occupied bands. When the
Z2 monopole charge on the sphere is 0 (1), the angle θ(k)
evolves from 0 to 4nπ ((4n + 2)π) with an interger n, be-
cause tNS is periodic along the equator and has an even (odd)
winding number. Now let us ask whether it is possible to
take a lift tNS → t̃NS from SO(2) to its double covering
group U(1) while the periodicity of t̃NS is kept. To answer
this, one defines a two-to-one mapping π : U(1) → SO(2)
by using t̃NS(θ) = exp(i θ2 ) and tNS(θ) = exp(iθσy). Let
us note that when tNS(θ) has an even (odd) winding num-
ber with θ ∈ [0, 4nπ] (θ ∈ [0, (4n + 2)π]), t̃NS(θ) is peri-

odic (non-periodic), thus the lifting from tNS to t̃NS is well-
defined (ill-defined). The same argument applies to the case
with Nocc > 2 [98]. The Z2 monopole charge is thus identi-
fied with w2.

To derive the equivalence between w2 and the linking num-
ber, let us continuously deform the sphere wrapping a NL γ,
by gluing the north and south poles at the center, into a thin
torus completely enclosing γ. As long as the band gap remains
finite during the deformation, w2 is invariant since the gluing
of the north and south poles does not creat a monopole, which
is further confirmed numerically as shown in Fig. 3(c,d). We
assume that the torus is thin enough so that all occupied bands
on it are non-degenerate. In this limit, according to the Whit-
ney sum formula [100, 101], w2 safisfies the following rela-
tions modulo two [75]

w2 =
∑
n<m

[w1,φ(Bn)w1,θ(Bm)− w1,φ(Bm)w1,θ(Bn)] (2)

where w1,φ/θ(Bn) is the first SW class of the nth occupied
band Bn along the toroidal/poloidal cycle on the torus wrap-
ping γ. As shown in [75], the first SW class w1,φ/θ(Bn) cor-
responds to the Berry phase Φn,φ/θ of the nth band along φ/θ
calculated in a smooth complex gauge, and it characterizes the
orientability of the occupied states. Through a direct calcula-
tion of the Berry phase in a Coulomb gauge, we find that [75]

w2 =
∑
γ̃j

Lk(γ, γ̃j), (3)

where Lk(γ, γ̃j) = 1
4π

∮
γ
dk ×

∮
γ̃j
dp · k−p

|k−p|3 is the linking
number [102] between γ and another NL γ̃j formed by the
occupied band degeneracy. Let us notice that NLs formed
between unoccupied bands do not contribute to the linking
number because the monopole charge is defined by occupied
bands. For the model in Eq. (1) with Nocc = 2, Φ1,φ = π,
Φ1,θ = π, Φ2,φ = π, and Φ2,θ = 0, so Lk = 1 as expected.

Wilson loop method for computing w2.— w2 can be
computed efficiently by using the Wilson loop tech-
nique [22, 23, 103–105]. The relation between the
Wilson loop spectrum and the Z2 monopole charge can
be proved by using the definition of w2 [97, 99] as
explicitly shown in [75]. In general, on a 2D closed
manifold with coordinates (φ, θ), the Wilson loop op-
erator along φ at a fixed θ is defined by [103–105]
W(φ0+2π,θ)←(φ0,θ) = limN→∞ FN−1FN−2...F1F0

where Fj is the overlap matrix at φj = φ0 + 2πj/N
with matrix elements [Fj ]mn = 〈um(φj+1, θ)|un(φj , θ)〉,
and φN+1 = φ0. On the wrapping sphere covered
by three patches shown in Fig. 3(b), the Wilson loop
operator W0(θ) ≡ W(2π,θ)←(0,θ) becomes W0(θ) =
tABW(2π,θ)←(π,θ)t

BCW(π,θ)←(π/2,θ)t
CAW(π/2,θ)←(0,θ),

where tABmn = 〈uAm(0, θ)|uBn (2π, θ)〉, tBCmn =
〈uBm(π, θ)|uCn (π, θ)〉, and tCAmn = 〈uCm(π/2, θ)|uAn (π/2, θ)〉.
Let us take a parallel-transport gauge defined by
|uαp;n(φ, θ)〉 = [Wα

(φ,θ)←(φα0 ,θ)
]mn|uαm(φ, θ)〉, where

φα0 = 0, π, π/2 for α = A,B,C, respectively, and Wα is
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FIG. 3: (a, b) The wrapping sphere covered by two or three patches.
(c, d) Wilson loop spectrum for ABC-stacked graphdiyne computed
on a sphere or a torus wrapping a Z2NL. (e) A torus covered by four
patches. (f) The Wilson loop spectrum on a torus with (w1,y, w2) =
(0, 0) when Nocc = 2. Similar spectra with (w1,y, w2) = (0, 1),
(1, 0), (1, 1) are shown in (g), (h), and (i), respectively.

defined with smooth states within the patch α. Then the
Wilson loop operator becomes

W0(θ) = Wp,0(θ) = tABp (θ)tBCp (θ)tCAp (θ), (4)

where Wp and tp are the Wilson loop operator and the transi-
tion function in the parallel-transport gauge. Let ue note that,
in this gauge, W0(θ) is simply given by the product of transi-
tion functions along the φ cycle. Since W0(0, π) = 1 due to
the consistency condition at triple overlaps [75], the image of
the map W0(θ) for θ ∈ [0, π] forms a closed loop. Then w2

is given by the parity of the winding number of W0(θ) [75],
which can be obtained gauge-invariantly from its eigenvalue
Θ(θ) [22, 103]. We apply the Wilson loop technique to ABC-
stacked graphdiyne, and find that the Z2NLs carry nontrivial
monopole charges. Figure 3(c) shows the first-principles cal-
culations of the Wilson loop spectrum computed on a sphere
wrapping a Z2NL. The single crossing on the Θ = π line in-
dicates the odd winding number, leading to w2 = 1. Fig. 3(d)
shows that the Wilson loop spectrum computed on a torus
is also nontrivial. These first-principles results confirm the
NLSM phase that we proposed here hosted in ABC-stacked
graphdiyne.

2D SW insulator (SWI).— Using w2 computed on a 2D BZ
torus, we can define a new PT -invariant 2D topological insu-
lator characterized by w2 when w1 = 0 (i.e., w1,φ = w1,θ =
0). To prove this, we consider a 2D BZ torus with coordinates
(φ, θ) = (kx, ky) [Fig. 3(e)]. Then w2 is again given by the
spectral degeneracy of the Wilson loop W0(θ) on the torus, as
shown in [75].

Let us first consider Nocc = 2 case. We calculate W0 along
an orientable cycle, because otherwise the Wilson loop spec-
trum has no stable crossing points such that it does not show
the topological property. One can always choose such an ori-
entable cycle [75]. Then, there are four Z2 homotopy classes
of Wilson loop spectra shown in Fig. 3(f-i). They are classi-
fied by the parity of the number of linear crossing points on

Θ = 0 and Θ = π. A spectrum corresponds to w2 = 0
(w2 = 1) when it has an even (odd) linear crossing points on
Θ = π. Fig. 3(f,g) and 3(h,i) are distinguished by the total
number of linear crossing points, which is even (odd) since
w1,θ = 0 (w1,θ = 1) [75].

Notice that the topology of the spectrum in Fig. 3(h) and
(i) differs only by an overall shift of the eigenvalues by π,
whereas those in Fig. 3(f,g) are invariant under the shift. This
indicates that w2 is independent (dependent) of the unit cell
choice when w1,θ = 0 (w1,θ = 1), because the Wilson
loop eigenvalues correspond to the Wannier centers for in-
sulators [103]. Indeed, the same unit cell dependence exists
for any even Nocc whereas w2 is independent of the unit cell
choice for any odd Nocc [75]. Therefore, w2 is a well-defined
topological invariant when w1 = 0. We may call the insulator
characterized by w2 = 1 as a 2D SW insulator (SWI). This is
a new kind of fragile topological phase [106–108] since it can
be trivialized when bands with (w1, w2) = (1, 0) are added.

Topological phase transition.— As a sphere wrapping a
Z2NL can be continuously deformed to two parallel 2D BZs,
one with w2 = 1 and the other with w2 = 0, a Z2NL can be
considered as a critical state separating a 2D NI and a 2D SWI.
Accordingly, the pair creation and annihilation of Z2NLs can
mediate a topological phase transition between a 3D NI and a
3D SWI, a vertical stacking of 2D SWIs. The presence of two
NL∗s formed between occupied bands clearly distinguishes a
3D SWI from a NI. Interestingly, first principles calculations
show that ABC-stacked graphdiyne turns into a 3D SWI af-
ter pair annihilation of Z2NLs under about 3 % of a uniaxial
tensile strain applied along the z direction. [See [75].]

Discussion.— Let us discuss about measurable properties
of NLSM with Z2NLs. Unfortunately, its surface states are
generally not robust due to P breaking on the surface [23].
Nevertheless, our study suggests that observing the linking
structure using ARPES [109] can provide strong evidence for
Z2NLs. Moreover, the bulk magnetoelectric response under
magnetic field can provide another evidence. When P and
T are individually symmetries of the system, the number of
pairs of Z2NLs (Nmp) can be determined from the inversion
eigenvalues of the occupied bands at inversion-invariant mo-
menta (IIM). Since a DBI changes two inversion eigenvalues
at an IIM, Nmp is given by the sum of the number of nega-
tive eigenvalue pairs over all IIM [21, 75]. Let us note that, in
P -invariant insulators with broken T , two times magnetoelec-
tric polarizability 2P3 is determined by inversion eigenvalues
in the same way as Nmp is [86]. This implies that a NLSM
with an odd number of Z2NL pairs turns into an axion insu-
lator, which can host chiral hinge modes along the domain
wall [110–112], when the band gap is opened due to a T -
breaking perturbation such as magnetic field [75]. We believe
that the theoretical prediction given in the present work can
be experimentally tested in ABC-stacked graphdiyne in near
future.

Note Added.— After the submission of this letter, fragile
topology in Z2-nontrivial NLSMs was also explored in [113];
the results of that work is consistent with our conclusions.
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[22] T. Bzdušek and M. Sigrist, Phys. Rev. B 96, 155105 (2017).
[23] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Phys. Rev. B 92,

081201(R) (2015).
[24] G. P. Mikitik and Y. V. Sharlai, Phys. Rev. Lett. 82 2147

(1999).
[25] C. -K. Chiu, A. P. Schnyder Phys. Rev. B 90, 205136 (2014);
[26] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Phys. Rev.

Lett. 115, 036806 (2015).
[27] L. M. Schoop, M. N. Ali, C. Straßer, A. Topp, A .Varykhalov,

D. Marchenko, V. Duppel, S. S. P. Parkin, B. V. Lotsch, and
C. R. Ast, Nat. Commun. 7, 11696 (2016).

[28] M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez,
R. Sankar, M. Szlawska, S.-Y Xu, K. Dimitri, N. Dhakal, P.
Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M.
Z. Hasan, and T. Durakiewicz, Phys. Rev. B 93, 201104(R)
(2016).

[29] J. Ahn and B.-J. Yang, Phys. Rev. Lett. 118 156401 (2017).
[30] S. Park and B.-J. Yang, Phys. Rev. B 96, 125127 (2017).
[31] X. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).
[32] K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129

(2011).
[33] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205

(2011).
[34] A. A. Burkov, M. D. Hook, and Leon Balents, Phys. Rev. B

84, 235126 (2011).
[35] B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P.

Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai,
T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

[36] B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C.
Huang, L. X. Zhao, G. F. Chen, C. Matt, F. Bisti, V. Strokov, J.
Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Nature
Physics 11, 724 (2015).

[37] S. Murakami and S. -i. Kuga, Phys. Rev. B 78, 165313 (2008);
S. Murakami, New J. Phys. 9, 356 (2007).

[38] S. Murakami, M. Hirayama, R. Okugawa, and T. Miyake, Sci.
Adv. 3: e1602680 (2017).

[39] A. M. Turner, Y. Zhang, R. S. K. Mong, A. Vishwanath, Phys.
Rev. B 85, 165120 (2012).

[40] S. T. Ramamurthy and T. L. Hughes, Phys. Rev. B 92, 085105
(2015).

[41] L. S. Xie, L. M. Schoop, E. M. Seibel, Q. D. Gibson, W. Xie,
and R. J. Cava, APL Mater. 3, 083602 (2015).

[42] Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder,
Phys. Rev. B 93, 205132 (2016).

[43] Q. Xu, R. Yu, Z. Fang, X. Dai, and H. Weng, Phys. Rev. B 95,
045136 (2017);

[44] Y. Chen, Y. Xie, S. A. Yang, H. Pan, F. Zhang, M. L. Cohen,
and S. Zhang, Nano Letters 15, 6974 (2015).

[45] J. Zhao, R. Yu, H. Weng, and Z. Fang, Phys. Rev. B 94, 195104
(2016).

[46] R. Li, H. Ma, X. Cheng, S. Wang, D. Li, Z. Zhang, Y. Li, and
X.-Q. Chen, Phys. Rev. Lett. 117, 096401 (2016).

[47] H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Phys. Rev. B
93, 201114 (2016).

[48] M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Nat.
Commun. 8, 14022 (2017).

[49] Y. Du, F. Tang, D. Wang, L. Sheng, E.-j. Kan, C.-G. Duan, S.



6

Y. Savrasov, and X. Wan, npj Quantum Materials 2:3 (2017).
[50] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y.

Kawazoe, Phys. Rev. B 92, 045108 (2015).
[51] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Phys. Rev. Lett.

115, 036807 (2015).
[52] M. Zeng, C. Fang, G. Chang, Y.-A. Chen, T. Hsieh, A. Bansil,

H. Lin, and L. Fu, arXiv:1504.03492v1;
[53] S. Kobayashi, Y. Yamakawa, A. Yamakage, T. Inohara, Y.

Okamoto, and Y.Tanaka, Phys. Rev. B 95, 245208 (2017).
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