
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Tunable Orbital Angular Momentum Radiation from Angular-
Momentum-Biased Microcavities
Adam Mock, Dimitrios Sounas, and Andrea Alù

Phys. Rev. Lett. 121, 103901 — Published  4 September 2018
DOI: 10.1103/PhysRevLett.121.103901

http://dx.doi.org/10.1103/PhysRevLett.121.103901


Tunable Orbital Angular Momentum Radiation from Angular

Momentum-Biased Microcavities

Adam Mock

School of Engineering and Technology and Science of Advanced Materials Program,

Central Michigan University, Mount Pleasant, MI 48859, USA

Dimitrios Sounas

Department of Electrical and Computer Engineering,

The University of Texas at Austin, Austin, TX 78712, USA

Andrea Alù
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Abstract

Lasers and light emitters do not typically radiate fields with orbital angular momentum (OAM).

Here we show that a suitable scheme of spatiotemporal modulation of a microring cavity laser

can impart a synthetic angular momentum, resulting in beams with well-defined OAM. The phe-

nomenon relies on a traveling wave modulation of the refractive index of the microring, which

breaks the degeneracy of oppositely oriented whispering gallery modes. In parallel, a static struc-

tural grating on the periphery of the microring enables efficient vertical radiation. The proposed

structure is inherently tunable and can also emit fields with zero net OAM while retaining toroidal

energy distributions similar to the effect of an axicon lens.
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Modern optical communication systems exploit various electromagnetic wave properties

to increase the bit rate per unit carrier frequency. Traditional approaches exploit polarization

and phase diversity. Recently, orbital optical angular momentum (OAM) has shown promise

as an additional degree of freedom to increase spectral efficiency [1, 2]. Because there is no

physical limit on the OAM order that one can radiate, in theory OAM provides an unlimited

number of additional communication channels for any given system. In practice, the number

of OAM channels is limited by diffraction and by the ability to create and detect waves with

well-defined OAM order. Traditional light sources do not possess net angular momentum, so,

by conservation of angular momentum, the emitted radiation will also not contain net OAM,

though there could be emitted equal amounts of positive and negative angular momentum

such as in a higher order vertical cavity surface emitting laser (VCSEL) mode. In this

paper, we put forth a technique for electrically biasing a ring resonator cavity with a net

angular momentum, which subsequently emits radiation with well-defined and tunable OAM

signature.

In previous studies, OAM laser beams have been created from beams without OAM by

passing through spiral phase plates or forked linear gratings [3]. Other approaches have

exploited metasurfaces [4, 5], spatial light modulators [6] and q-plates [7, 8]. Cai et al.

demonstrated OAM beams generated from notched microring resonators sourced by light

coupled from a bus waveguide [9]. A single whispering gallery mode (either clockwise or

counterclockwise) was excited by a uni-directional wave from the bus waveguide, and the

resonators emitted the OAM radiation vertically. Other integrated optics approaches for

generating OAM radiation include an Archimedean spiral-shaped waveguide [10–12], a col-

lection of subwavelength cavities designed for broadband OAM vertical radiation [13] and

phased array nanoantennas [14]. In these designs, however, the light source and the OAM

generating element are two discrete components. A single, compact laser device with nonde-

generate modes possessing nontrivial OAM would reduce cost, improve efficiency, and enable

a larger degree of integration.

In this context, a recent study demonstrated a microring OAM laser by exploiting PT -

symmetry [15]. Introducing appropriately spaced gain and loss regions along the microring

results in a complex grating whose Fourier decomposition has a single complex component

rather than the usual two, enabling symmetry breaking and the selective excitation of one

OAM order [16]. However, this approach inherently requires absorbing elements in the
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resonator, which expectedly increases the laser threshold. Furthermore, the need of hetero-

geneous materials deposited on the ring in order to establish separate gain and loss regions

complicates scalability and integration with other components.

In the following, we present a cavity design capable of vertically-emitting tunable OAM

beams using a spatiotemporally modulated microring cavity. Our design is based on an

InGaAsP material system, making it amenable to optical communication systems operating

at λ0 = 1.55µm. The approach does not require additional absorptive regions added to the

microring, and the modulated microring cavities maintain large quality (Q) factors in excess

of 20,000. This makes the cavity a good candidate for electrically pumped continuous-wave

OAM laser operation. One may also envision the extension of these concepts to all-optical

modulation exploiting nonlinearities.

Consider the microring resonator schematically depicted in Fig. 1(a). Such a resonator

supports pairs of degenerate states with positive and negative angular momentum |+l〉 and

|−l〉 with frequency ω+l = ω
−l ≡ ωl. One could imagine mechanically spinning this cavity

about its central vertical axis, and the ensuing Doppler effect would break the degeneracy be-

tween |+l〉 and |−l〉. The resultant frequency-separated modes would then radiate fields with

distinct OAM orders. In most scenarios, mechanically spinning the cavity is impractical and

would require very large angular velocities to experience significant splitting. Alternatively, a

synthetic angular momentum can be imparted to the cavity by modulating the electrical per-

mittivity with a traveling wave grating of the form ∆ε(ϕ, t) = ∆εm cos(ωmt−Lmϕ) [18, 19].

The modes |+l〉 and |−l〉 can be targeted specifically by choosing Lm = 2l. Based on an

electromagnetic time-dependent perturbation theory [20, 21], the states of the system under

modulation assume the form |lα〉 = a+l(t) |+l〉+ a
−l(t) |−l〉, where |lα〉 is a hybridized state

consisting of a superposition of |+l〉 and |−l〉. With this modulation, the coefficients a+l(t)

and a
−l(t) obey the coupled mode equations

ȧ+l(t) = (−iωl −
1

τ
)a+l(t)− i

ωlκm

2
e−iωmta

−l(t) (1)

ȧ
−l(t) = (−iωl −

1

τ
)a

−l(t)− i
ωlκm

2
eiωmta+l(t) (2)

where τ is the photon lifetime, and κ ∼
∫

∞

−∞

∫

∞

0
∆εm|Etl(r, z)|

2rdrdz is a unitless coupling

coefficient proportional to the overlap integral of the field with the grating, where Etl(r, z)

is the field in the cross section (r − z plane) of the unperturbed microring [18, 19, 21].
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FIG. 1. (a) Schematic diagram depicting a microring resonator and the directionality of two degen-

erate whispering gallery modes. (b) Dependence of the characteristic frequencies on modulation

frequency ωm of the four components resulting from spatiotemporal modulation. (c) Top view of the

OAM laser cavity showing a static structural grating on the periphery of the microring. (d) Three-

dimensional depiction of the vertical emission of OAM radiation. (e) Detailed view of resonance

spectrum in the vicinity of h/λ0 = 0.2137 where h is the cavity height. Spectrum was obtained

by taking the discrete Fourier transform of a time sequence calculated by the three-dimensional

finite-difference time-domain (FDTD) method and fitted using Padé approximants [17].

Solving Eqs. 1 and 2 results in modes that consist of superpositions of |+l〉 and |−l〉 with

frequencies separated by ωm and also different amplitudes. Complete expressions for the

two modes resulting from angular momentum bias are

|lα〉 = |+l〉 e−iωlαt +
∆ω

ωlκm

|−l〉 e−i(ωlα−ωm)t (3)

|lβ〉 = −
∆ω

ωlκm

|+l〉 e−i(ωlβ+ωm)t + |−l〉 e−iωlβt (4)

where ωlα = ωl − i 1
τ
+ ∆ω

2
, ωlβ = ωl − i 1

τ
− ∆ω

2
and ∆ω = ωm −

√

ω2
m + (ωlκm)2 [18, 19, 21].

The use of the Dirac ket notation here deviates somewhat from its standard use in quantum
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mechanics due to the dissipative nature of the resonator modes. Namely, the states cannot be

normalized since as t → ∞ all coefficient amplitudes decay to zero. To rectify this formally, a

term representing coupling to radiation modes should be included in Eqs. 1 and 2. However,

to maintain our present focus on the resonator modes and to be consistent with previous

theoretical treatments of electromagnetic coupled mode theory [20], this external coupling

will be neglected.

Fig. 1(b) shows the evolution of the frequencies of the modulated ring modes versus ωm

keeping in mind that each mode contains two frequency components: ωlα and ωlα,−1 ≡

ωlα − ωm are the frequency components of the mode |lα〉, while ωlβ and ωlβ,+1 ≡ ωlβ +

ωm are the frequencies for the mode |lβ〉. The terms occurring at frequencies ωlα, ωlβ

are the components with the largest amplitude. In an example experimental scenario, if

the system were to lase at ωlα, then there will also be radiation with opposite angular

momentum at ωlα,−1. This fact can possibly be used for communications over separate

frequency channels. The two fundamental frequencies ωlα, ωlβ approach ωl as ωm increases,

while ωlα,−1 and ωlβ,+1 are further displaced from ωl. It is interesting that, within the

context of the coupled mode analysis, these four modes retain the same photon lifetime as

the original degenerate WGM modes. This suggests that the spatiotemporal modulation

scheme imparting the desired form of angular momentum does not adversely affect the

Q factor of these cavities, which is important for laser applications. In previous work,

this degeneracy breaking induced by an angular-momentum bias was exploited to realize

a magnet-free non-reciprocal component [19]. Here, we show that the imparted effective

angular momentum may be used to realize efficient OAM generation, not having to rely on

loss and absorption, and directly amenable to integrated laser sources.

The cavity designed for lasing in well-defined OAM modes is shown in Fig. 1(c-d), whose

dominant radiation is in the vertical direction. In order to realize vertical radiation, a static

structural grating is introduced along the periphery of the microring [9, 15]. From standard

coupled mode analysis, it can be shown [9, 21] that the OAM of the cavity mode lwgm and

the OAM of the radiated field lrad are related by

lrad = lwgm − gq (5)

where g is an integer and q is the number of static structural grating periods.

We model the electrodynamics of an angular-momentum-biased microring cavity using
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three-dimensional (3D) finite-difference time-domain (FDTD) simulations. The ring cavity

has a rectangular cross section with height h, thickness 1.5h and inner radius 5.5h. For

operation at λ0 = 1.55µm, these geometry specifications become h = 331nm, 1.5h = 497nm

and 5.5h = 1.8µm. The height and width are consistent with standard semiconductor

waveguide geometries. The ring resonator radius is chosen small to keep the simulation

domain of reasonable size. These concepts are readily extendable to resonators with larger

radii. The cavity has a refractive index n = 3.17, consistent with semiconductor active

materials [22], and it is bonded to a low index substrate with index n = 1.74, consistent

with sapphire [23–25]. We introduce a static structural grating with q = 15 and w = d =

0.1h = 33nm where w and d are defined in Fig. 1(c). Fig. 1(e) shows the passive (no

internal absorption or gain) cavity spectrum calculated via discrete Fourier transform of the

FDTD time-sequence initialized by a spatiotemporal impulse. The set of modes shown in

the spectrum possess angular momenta lwgm = ±20. Four resonance peaks are found, and

these peaks correspond to the four frequencies discussed previously and whose dependence

on ωm is depicted in Fig. 1(b). The spatiotemporal bias has an amplitude ∆ε = 0.032,

or ∆n = 0.005, consistent with carrier injection in semiconductor gain materials [26] and

a factor of two smaller than the index contrast used in a previous approach [15]. The

modulation frequency is ωm
h

2πc
= 1.08 × 10−4, where c is the vacuum speed of light. This

comes out to 5 × 10−4 times the optical frequency or fm = 100 GHz at λ0 = 1.55µm.

Interestingly, as we show in the following, despite the huge contrast between modulation

and signal frequencies, the modulation enables degeneracy lifting and successfully provides

a scheme to realize OAM laser generation.

Fig. 2(a) shows Er(x, y, z = 40h) obtained via a far-field transformation of the FDTD-

calculated fields recorded just above the microring (r is the radial component in cylindrical

coordinates) for the four resonant peaks in Fig. 1(e) [27]. The resonator mode is TEz-like,

in which Er and Hz are the fundamental field components. In the far-field, the dominant

field components are Er and Hϕ (see [21] for more discussion on the polarization state of

the radiated field). The peak amplitudes shown in Fig. 1(e) are determined by Eqs. 3 and 4

but also by the particular method of field excitation and the field monitoring location. To

verify Eqs. 3 and 4, the fields shown in Fig. 2(a) can be used. The higher order mode fields

(ωlα,−1, ωlβ,+1) have maximum amplitudes that are 0.51 times the maximum amplitudes

of the fundamental mode fields. From the frequency spacing in Fig. 1(e), one obtains
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FIG. 2. (a) Field distributions Er(x, y, z = 40h) calculated using a far-field transformation of

the field obtained from FDTD just above the cavity. The width of the view shown is 305h. (b)

Distribution of power in the components of the Fourier-Bessel decomposition Eq. 7. (c) Field

distribution Er(x, y, z = 40h) of a radiation field with OAM l = 0 calculated using a far-field

transformation of the field obtained from FDTD just above the cavity. The width of the view

shown is 305h.

ωlκm = 1.58 × 10−4, which yields ∆ω
ωlκm

= 0.52 and agrees well with the fields obtained via

FDTD.

The left- and right-handedness of the fields shown in Fig. 2(a) is apparent, and it is

consistent with the OAM of the four modes, following the theoretical analysis above (i.e.

|lrad| = |20 − (1)15| = 5 for the mode with frequency ωlα). The quality of OAM of the

different modes is assessed by calculating the components of a Fourier-Bessel decomposition

of the fields. Assuming that

Er(r, ϕ, z0) =
∑

l

dlJl(kr)e
ilϕ (6)

7



the dl are obtained via

dl =

∫ 2π

0

∫

∞

0

Er(r, ϕ, z0)Jl(kr)e
−ilϕrdrdϕ. (7)

Fig. 2(b) shows the normalized power in each mode, calculated according to Pl = |dl|
2/

∑

l′ |dl′|
2.

The coefficients for the ωlα,−1 and ωlα modes are shown. P
−5 = 0.977 for ωlα,−1 and

P5 = 0.980 for ωlα , which indicates that these fields have extremely well-defined OAM. The

coefficients for ωlβ and ωlβ,+1 also follow the same trend. The OAM value of lrad = ±5

is consistent with the intended value predicted by Eq. 5 in which lwgm = ±20 and

q = 15. The grating also scatters the cavity mode into higher order OAM orders, such

as lrad = 20− (−1)15 = 35 and lrad = 20− (2)15 = −10; however, these modes fall outside

the light cone and are not efficiently radiated [9, 21].

The Q factor of the lwgm = 20 degenerate modes of the ring resonator cavity without

modulation and without a static structural grating is Q = 48000, limited by bend loss and

substrate radiation. When a spatiotemporal modulation is applied without a structural

grating, the Q factors of the ensuing four modes remain in the range 44000-50000, which is

close to the nominal value and consistent with the theory laid out previously. The purpose

of the static grating is to enhance vertical radiation, so the Q factors of the relevant modes

will necessarily decrease. In the results presented above, a grating with size parameters

d = w = 0.1h maintained the Q factors of the fundamental modes (ωlα and ωlβ) to values

near 50000. However, the Q factors of the higher order modes ωlα,−1 and ωlβ,+1 decreased

to 27000 and 35000, respectively. The precise reason for these lower Q factor values was not

investigated; however, they remain sufficiently high for laser applications. Ultimately, the

mode with the highest Q factor and strongest spectral alignment with the gain spectrum

will be the lasing mode, and the far-field will be dominated by only one set of frequencies

(ωlα, ωlα,−1) or (ωlβ, ωlβ,+1) depicted in Fig. 1(e), following the laser dynamics.

When the cavity mode of interest has an angular momentum quantum number equal to

that of the static structural grating, then lrad = lwgm − gq = 0, and one anticipates a beam

with a toroidal field distribution. Fig. 2(c) shows the field radiated from a cavity with q = 15

and a spatiotemporal modulation with Lm/2 = 15. The emitted field maintains a toroidal

field distribution, an effect similar to that of an axicon lens [21]. A uniform ring field with

zero OAM, such as the one shown in Fig. 2(c), is of potential interest in optical trapping

and stimulated emission electron depletion microscopy.
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FIG. 3. (a) Schematic depiction of a cavity with 17 discrete modulation contact points. The

associated signal applied to the ring is shown for the first three sections. ϕn = (n + 1/2)2π17 for

n = 0 . . . 16. (b) Field distribution Er(x, y, z = 40h) for the ωlα,−1 mode in the cavity shown in (a)

calculated using a far-field transformation of the field obtained from FDTD just above the cavity.

The width of the view shown is 305h. (c) Strategy for dynamically changing the scattering grating

period. Rather than applying a different signal to each individual section, adjacent sections can be

grouped together, so that the cavity modes are scattered from gratings with larger periods. Five

groups of six sections are shown. (d) Same as (c) but with six groups of five sections (modulation

signals not shown). (e) Same as (d) but with ten groups of three sections.

In order to impart a dynamic travelling-wave grating in the microring, the material should

be electrically contacted with appropriate resolution. If the continuous azimuthal variation is

approximated with discrete step-wise contact points, the Nyquist sampling theorem dictates

that at least two samples per period are required. In the present example with Lm = 2l = 40,

this translates to 80 electrical contact points along the ring, which would be a formidable

fabrication demand. However, a previous experimental demonstration of a PT symmetric

OAM laser showed microring cavities with periodic layers of refractive index alternating

materials at 56 locations along the ring [15]. While by no means trivial, such fine-scale

material control of microring cavities is, in principle, feasible, and complicated junction

geometries with multiple interdigitated junctions [28–32] and multiple contact points [33,

34] have been experimentally realized in the context of optical modulators. Further, as

pointed out in previous work [19], by exploiting the step-wise contact arrangement and

Fourier decomposing the individual rect-function contact geometries, one can reduce the

total electrical contact number to as little as 3 at the expense of requiring larger modulation

amplitude. In the present study, we found that 17 discrete contact points reliably generated

9



good quality OAM beams, even considering the realistic diffusion in the different regions;

though simulation time, rather than fundamental device properties, was the limiting factor.

The device geometry is shown schematically in Fig. 3(a), and Fig. 3(b) shows Er(x, y, z =

40h) for the ωlα,−1 mode of this discrete-modulated cavity with a static structural grating

with q = 17 and d = w = 0.2h. The l = −3 OAM signature (resulting from lwgm = −20) is

apparent with P
−3 = 0.982. More details of this discrete modulation scenario are discussed

in [21].

While reducing the number of electrical contact points on the microring cavity reduces

fabrication demands, increasing the number of contact points enables OAM tunability. This

is because the periodic discontinuity of refractive index between discrete modulation points

creates an effective static grating. In the example shown in Fig. 3(a) and (b) we show

a field with OAM lrad = −20 + 17 = −3, resulting from the 17 discrete contact points.

However, if a non-prime number of contact points is used such as N = 30, then the emitted

OAM can be tuned by applying the same modulation signal to adjacent discrete sections.

This is illustrated in Fig. 3(c)-(e). In Fig. 3(c), groups of six adjoining contacts receive the

same modulation signal, thereby reducing the number of effective grating periods from 30

to qeff = 5. In this case, the radiated beams would posses OAM with lrad = −20 + g5, and

only the OAM orders falling within the radiation cone would be coupled out [9, 21]. For

this specific example, they correspond to 3 ≤ g ≤ 5; however, the lowest value of g will

dominate, so this configuration would radiate OAM beams predominantly with lrad = −5.

A similar analysis applies to the devices shown in Fig. 3(d) and (e) where qeff = 6 and

qeff = 10, respectively. In those cases, OAM beams with lrad = −8 and lrad = 0 would be

emitted, respectively. The full range of OAM tunability of this device includes OAM orders

lrad = −5,−8, 0, 10. Similar to the static structural gratings discussed above, the Q factors

of these cavities remain close to their unperturbed values.

To conclude, a new approach to impart OAM to microcavity laser emission has been pre-

sented, which does not require the use of loss to balance gain, as in previous demonstrations.

The proposed design is based on azimuthal spatiotemporal modulation of a microring cavity,

which lifts the degeneracy of clockwise and counterclockwise whispering gallery modes. The

radiated OAM can be dynamically tuned by controlling the electrical signal applied to the

discrete modulation sections. The design maintains the high Q factors of these cavities and

only moderate modulation amplitudes and frequencies are needed. This approach also avoids
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the introduction of lossy materials into the cavity, as it is required for OAM lasers based on

PT symmetry. Applications of this OAM microlaser include OAM-multiplexing in optical

communications, optical trapping and manipulation and stimulated emission depletion mi-

croscopy. We also point out that the proposed laser cavities are inherently non-reciprocal,

similar to recently proposed spatiotemporally modulated antennas [35], which leads to the

added potential benefit of eliminating the need for an additional protective optical isolator

device.
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