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Generation of entanglement between disparate physical objects is a key ingredient in the field
of quantum technologies, since they can have different functionalities in a quantum network. Here
we propose and analyze a generic approach to steady-state entanglement generation between two
oscillators with different temperatures and decoherence properties coupled in cascade to a common
unidirectional light field. The scheme is based on a combination of coherent noise cancellation and
dynamical cooling techniques for two oscillators with effective masses of opposite signs, such as quasi-
spin and motional degrees of freedom, respectively. The interference effect provided by the cascaded
setup can be tuned to implement additional noise cancellation leading to improved entanglement
even in the presence of a hot thermal environment. The unconditional entanglement generation is
advantageous since it provides a ready-to-use quantum resource. Remarkably, by comparing to the
conditional entanglement achievable in the dynamically stable regime, we find our unconditional
scheme to deliver virtually identical performance when operated optimally.

Entanglement is a peculiar property of quantum
physics and a key technological resource in quantum in-
formation processing [1] and quantum metrology [2, 3],
allowing improvements of atomic clocks [4, 5] and op-
tical magnetometers [6, 7]. Moreover, entanglement is
often used to delineate the boundary between classical
and quantum physics. Generating entanglement for ever-
larger objects therefore establishes the reach of quantum
mechanics into the macroscopic realm. Entanglement be-
tween separate macroscopic systems has already been re-
alized with pairs of atomic vapor ensembles [7–9] and dia-
monds [10] at room temperature, and mechanical oscilla-
tors at cryogenic temperatures [11, 12]. However, gener-
ation of entanglement in hybrid systems composed of dis-
parate macroscopic objects is an outstanding challenge–
in particular due to the presence of the hot thermal envi-
ronment. Such hybrid entanglement would combine at-
tractive features of very different systems as required to
realize complex quantum information networks [13].

In this Letter, we devise an efficient scheme for un-
conditionally entangling two macroscopic systems with
potentially very different decoherence properties. The
scheme works for two generic bosonic oscillators cou-
pled linearly to a unidirectional traveling light field, with
the extra provision that their effective masses have op-
posite signs. A negative mass oscillator in the entan-
glement context was first used in Ref. [8], and further
extensively developed for collective degrees of freedom
in polarized spin ensembles prepared in an energetically
inverted state [14, 15] such as in atomic ensembles at
room temperature in free space [16, 17], cold atoms in
Bose-Einstein condensates [18], optical cavities [19, 20],

or trapped in 1-dimensional arrays [21, 22] as well as
in solid-state ensembles of nitrogen-vacancy centers [23]
and quasi-spins of rare-earth-ion doped crystals [24, 25].
The positive mass subsystem can, naturally, be imple-
mented in a wider range of systems, in particular in mo-
tional degrees of freedom, e.g., the center-of-mass mo-
tion of ensembles of atoms [20, 26, 27] or ions [28] and
micromechanical oscillators [11, 12, 29–31]. A motional
degree of freedom can also implement an effective neg-
ative mass by employing two-tone driving schemes [32]
(see also Ref. [33]).

An essential mechanism of our scheme is coherent
quantum noise cancellation (CQNC) of the back action
(BA) of light on the two oscillators. This hinges on the
observation that for two oscillators with masses of oppo-
site signs, m+ = −m− := m > 0, we have (d/dt)[X̂+ +
X̂−] = [P̂+ − P̂−]/m for which [X̂+ + X̂−, P̂+ − P̂−] = 0,
where X̂± and P̂± are canonical conjugate variables for
the positive (negative) mass oscillator. Hence, this pair
of variables is classical in the sense that the Heisenberg
uncertainty relation imposes no constraint on the simul-
taneous knowledge of them [8, 14, 15]. This is possi-
ble because (for ideally matched oscillators) the asso-
ciated measurement BA goes into the canonically con-
jugate joint variables, while interfering destructively in
the BA-free variables. Measuring the latter beyond the
Heisenberg limit of the individual systems entails en-
tanglement between the two oscillators. CQNC based
on this principle has previously been analyzed theoret-
ically in the context of sensing beyond the standard
quantum limit (SQL) [14, 34–38] and realized experi-
mentally using two mechanical oscillators [32] and in a
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Figure 1. Hybrid system consisting of two oscillators with
negative and positive mass, respectively, typically imple-
mented in collective spin (S) and motional (M) degrees of
freedom. These are coupled in cascade to a common unidi-
rectional light field via quadratic interactions induced typi-
cally by a strong, classical carrier. For each oscillator, this
results in Stokes and anti-Stokes sidebands proportional to
rates ΓjP/B and of width γj , j ∈ {S,M} (see inset); the ef-
fective resonance frequency Ωj ≡ sgn(mj)ωj accounts for,
e.g., the fact that energy must be extracted from a negative-
mass oscillator to excite it. The joint interaction with the
light field is best described by homodyne quadratures X̂L, P̂L

(symmetrized combinations of sidebands), whose initial state
X̂L,in, P̂L,in is vacuum (see lower part of figure). The nega-
tive mass system is driven by X̂L,in only (ΓSP = ΓSB) and
its response is mapped onto P̂L. The positive mass system is
likewise coupled to X̂L,in, but also to P̂L (ΓMP < ΓMB) at an
adjustable rate R, so that the response of the negative mass
system drives the positive mass system. Consequently the re-
sponse of the positive mass system will interfere destructively
with that of the negative mass system in the outgoing field
quadrature P̂L,out as can (optionally) be verified by homodyne
detection. Additionally, the oscillators are driven by distinct
thermal reservoirs with decoherence rates γ̃j,0 (wavy arrows).

spin-optomechanical hybrid system [39]. It has also been
analyzed as a means of entangling two atomic spin [40, 41]
or mechanical [35, 42] systems as has been demonstrated
in experiment [7–9, 12].

However, the theoretical studies have mostly fo-
cused on oscillators with identical or negligible intrinsic
linewidths, a condition which is difficult to meet in prac-
tice for disparate hybrid systems. The present scheme
circumvents this restriction by interfacing the two oscil-
lators unidirectionally. The resulting causal asymmetry
permits efficient CQNC even for vastly different intrinsic
linewidths, thereby facilitating entanglement generation.
Model.—We consider a generic hybrid system com-

posed of two subsystems with effective masses sgn(mS) =
−sgn(mM) < 0 coupled to a unidirectional opti-
cal field [Fig. 1] (near-ideal unidirectionality has been
achieved experimentally, e.g., see Refs. [7, 39]). Both sub-
systems are driven by individual thermal reservoirs. The
positive/negative mass subsystem is referred to as a mo-
tional/collective spin (M/S) degree of freedom and rep-
resented by a localized bosonic mode with dimensionless
canonical variables. These variables satisfy [X̂j , P̂k] =
iδj,k, (j, k ∈ {M,S}) resulting from a rescaling by the
zero-point fluctuation amplitudes xj,zpf =

√
~/(|mj |ωj)

and pj,zpf = ~/xj,zpf, where ωj is the resonance frequency.
The free evolution of the hybrid system is (setting ~ = 1)

Ĥ0 =
∑

j∈{M,S}

sgn(mj)
ωj
2

(X̂2
j + P̂ 2

j ), (1)

and hence a negative mass translates into a negative effec-
tive resonance frequency Ωj ≡ sgn(mj)ωj for the dimen-
sionless variables, inverting the sense of rotation in the
{X̂j , P̂j} phase space [Fig. 1] and making the state with
zero quanta its highest energy state (not to be confused
with a positive mass oscillator with an inverted potential,
Ĥ0 ∝ −X̂2

j + P̂ 2
j ). We specialize to the resonant scenario

ωM = ωS := ω.
We introduce annihilation operators for the local-

ized modes, X̂j = (âj + â†j)/
√

2 and P̂j = (âj −
â†j)/(

√
2i), and the propagating field linking them, b̂(t) =

(2π)−1/2
∫∞
−∞ b̂(Ω)e−iΩtdΩ (defined in a rotating frame

with respect to the optical carrier). The Hamiltonian for
two-mode quadratic interaction between the localized os-
cillators and the light field is [40, 41]

Ĥint =
∑

j∈{M,S}

(
√

ΓjBâ
†
j b̂(tj)+

√
ΓjPâ

†
j b̂
†(tj)+H.c.), (2)

where we assume tS < tM, i.e., the optical field inter-
acts with S first. Equation (2) comprises two kinds
of interaction: beam-splitter (B), ∝ (â†j b̂ + H.c.), and
parametric down-conversion (P), ∝ (â†j b̂

† + H.c.), j ∈
{M,S}. These processes produce sidebands at rates
ΓjB = Γj sin2 θj ,ΓjP = Γj cos2 θj [Fig. 1, inset], which
we parametrize by Γj = ΓjB + ΓjP and θj ∈ [0, π/2], the
coupling rates and angles.

An excitation in the upper sideband from the positive-
(negative-)mass oscillator arises from

√
ΓMBâMb̂

†

(
√

ΓSPâ
†
Sb̂
†), simultaneously removing (adding) an

oscillator quantum (analogously for the lower side-
band). This indistinguishability of adding a quantum
to one subsystem and removing one from the other
as energy is either added or removed by the common
light field permits the system to be driven into a
two-mode-squeezed entangled state accompanied by
CQNC of the BA contribution to the joint output field.
Perfect indistinguishability necessitates ΓMB = ΓSP and
ΓMP = ΓSB, i.e., θM = −θS + π/2 and ΓM = ΓS, but
also the temporal responses of the subsystems must be
suitably matched. However, whenever θM 6= θS there is
an overlap between the light quadrature reading out S
and the quadrature driving M , i.e., the spin response to
light and thermal forces drives the motional mode. This
induces a tunable interference effect that can implement
additional quantum and classical noise cancellation
even for highly asymmetric subsystems, leading to
unconditional entanglement generation competitive with
conditional schemes–this is the main finding of this
Letter.
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The regime of interest is ωj � Γj & γ̃j,0, where γ̃j,0
is the thermal decoherence rate, providing the time-scale
separation required for probing the system over several
quantum-coherent oscillations. This permits treating
Eq. (2) in the rotating wave approximation (RWA), i.e.,
retaining only slowly varying terms, and implies that the
interaction with light is confined to two disjoint sidebands
b̂−(t) + b̂+(t) := (2π)−1/2(

∫ 0

−∞+
∫∞

0
)b̂(Ω)e−iΩtdΩ =

b̂(t), [b̂±(t), b̂†±(t′)] = δ(t − t′), centered at frequencies
Ω = ∓ω (relative to the carrier). We introduce the
non-Hermitian homodyne two-mode quadratures X̂L :=
(b̂+ + b̂†−)/

√
2 and P̂L := (b̂+ − b̂†−)/(

√
2i). Performing

the RWA we find

Ĥint ≈ â†M
√

ΓMQ̂θ′M(tM) + âS
√

ΓSQ̂−θ′S(tS) + H.c., (3)

where Q̂θ′ := cos θ′X̂L + i sin θ′P̂L, θ′j = θj − π/4. Equa-
tion (3) indicates that the cosine and sine components of
the phase quadrature ∝ P̂L + P̂ †L read out the (unnormal-
ized) EPR-type variables

√
ΓM cos θ′MX̂M+

√
ΓS cos θ′SX̂S

and
√

ΓM cos θ′MP̂M −
√

ΓS cos θ′SP̂S, respectively. These
commute when

√
ΓM cos θ′M =

√
ΓS cos θ′S, in which case

they can be BA-free.
Eliminating the light field and using a co-propagating

time coordinate t′ = t− x/c (dropping the prime hence-
forth), the Heisenberg-Langevin equations can be ex-
pressed in terms of the forces f̂j :=

√
γj,0âj,in + f̂j,ba as

[henceforth âj is in the rotating frame of Ĥ0 (1)] [43–45]

d

dt
âS = −γS

2
âS + f̂S,

d

dt
âM = −γM

2
âM + f̂M +

√
1− εRâ†S, (4)

where

f̂S,ba := − i(
√

ΓSBb̂−,in +
√

ΓSPb̂
†
+,in),

f̂M,ba := − i
√

1− ε(
√

ΓMBb̂+,in +
√

ΓMPb̂
†
−,in)

− i
√
ε(
√

ΓMBb̂
′
+,in +

√
ΓMPb̂

′†
−,in). (5)

Here, an additional uncorrelated vacuum b̂′±,in im-
pinges on M due to transmission (power) loss ε >
0 between the subsystems. The vacuum fields sat-
isfy 〈b̂±,in(t)b̂†±,in(t′)〉 = 〈b̂′±,in(t)b̂′†±,in(t′)〉 = δ(t − t′).
[âj,in (t) , â†j,in (t′)] = δ(t − t′), j ∈ {M,S}, represent
the thermal noise fluctuations with 〈âj,in (t) â†j,in (t′)〉 =
(n̄j + 1)δ(t − t′) in terms of the thermal occupancy n̄j .
For example, for S, n̄S > 0 represents the additional noise
present for an imperfectly polarized ensemble, while for
M, n̄M ≈ kBTM/(~ωM) at ambient temperature TM (kB
is the Boltzmann constant). The effective linewidths (in-
cluding dynamical broadening from the light field cou-
pling) are denoted γj = γj,0 − Γj cos(2θj), where γj,0 is
the linewidth in absence of dynamical broadening; dy-
namical stability requires γj > 0. Finally, due to the

unidirectionality of the light field, information can only
propagate from the first to the second subsystem in the
cascade. The corresponding unidirectional coupling rate
is R =

√
ΓSBΓMP −

√
ΓMBΓSP = −

√
ΓMΓS sin(θM − θS).

For R = 0 ⇔ θS = θM, Eqs. (4) decouple so that cor-
relations build up solely due to those between f̂S,ba and
f̂M,ba, and the ordering of oscillators becomes immate-
rial (assuming ε = 0). In contrast, R 6= 0 gives rise to a
nontrivial asymmetry of the cascaded system (4), which
is exploited below for improved noise cancellation and
entanglement generation.
Unconditional steady-state solution.—The steady-

state solution to Eqs. (4) is

âS(t) =

∫ t

−∞
dt′e−(t−t′)γS/2f̂S(t′),

âM(t) =

∫ t

−∞
dt′{e−(t−t′)γM/2f̂M(t′) (6)

+
2
√

1− εR
γM − γS

[e−(t−t′)γS/2 − e−(t−t′)γM/2]f̂†S(t′)}.

For R = 0, the steady states of the individual subsystems
are determined solely by the (stochastic) driving forces
in the past time interval of duration ∼ 1/γj . Hence,
whenever γM 6= γS the different temporal responses to the
BA b̂±,in will result in imperfect CQNC. However, if it is
the second system (M) in the cascade which is relatively
short-lived, γM > γS, then for R 6= 0 the unidirectional
coupling term ∝ Ra†S [Eq. (4)] effectively prolongs the
memory time 1/γM by driving M with the spin response
contained in the light field, resulting in improved CQNC
for R < 0⇔ θM > θS. Ideal cancellation can be achieved
in the adiabatic limit γM � γS and 2R/γM → −1 (for
ε = 0) [Eq. (6)], which is compatible with the demand
for near-ground-state dynamical cooling of the motional
mode γM � γ̃M,0, where γ̃j,0 := γj,0(n̄j + 1/2). The
additional interference arising for R < 0 does not rely on
the opposite signs of masses (in contrast to the scheme as
a whole) and can simultaneously suppress both quantum
noise and the spin thermal noise, thereby removing the
need for dynamical spin cooling.

From Eqs. (6) the entries of the covariance matrix in
steady state are

∆2X̂S =
1

γS
(
ΓS

2
+ γ̃S,0),

∆2X̂M =
1

γM
(
ΓM

2
+ γ̃M,0 +

√
1− εR〈X̂S, X̂M〉), (7)

〈X̂S, X̂M〉 = −2
√

1− ε
γS + γM

(
√

ΓSΓM sin(θM + θS)− 2R∆2X̂S),

where 〈X̂S, X̂M〉 := 〈X̂SX̂M〉+〈X̂MX̂S〉−2〈X̂S〉〈X̂M〉. As
our entanglement figure of merit we consider the variance
of generalized EPR variables of the form [46, 47]

ξg =
∆2(X̂S + gX̂M) + ∆2(P̂S − gP̂M)

1 + g2
< 1, (8)
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Figure 2. Entanglement ξg (< 1 in the colored region) as
a function of quantum cooperativities of the spin (CS) and
motional (CM) subsystems for optimized coupling angles θS
and θM while fixing the parameters γS,0 = 2π × 5kHz, n̄S =
1, γM,0n̄M = 2π×10kHz, and assuming no transmission losses,
ε = 0. Optimal CM for given CS is indicated by the dashed-
dotted curve. Imposing the additional constraint θS = θM ⇒
R = 0, entanglement ξg < 1 is only possible in the subregion
delineated by the solid contour.

which is the inseparability criterion for Gaussian states
and any g ∈ R. The steady-state value of ξg can be evalu-
ated using the solution (7), noting that ∆2(X̂S +gX̂M) ≈
∆2(P̂S − gP̂M) within the RWA. In principle, ξg can be
minimized over g, but verifying such entanglement ex-
perimentally requires individual, and hence destructive,
readout of the two subsystems. Since our scheme auto-
matically and non-destructively produces readout of the
EPR variables with g =

√
ΓM/[(1− ε)ΓS] cos θ′M/ cos θ′S

[see discussion below Eq. (3)], which can be BA-free when
g → 1 and ε → 0, we henceforth fix g by the aforemen-
tioned expression.
Spin-optomechanical implementation.—Let us con-

sider a spin-optomechanical implementation [48, 49] (see
[50] for a derivation of Eqs. (4,5) in this context). Op-
tomechanical systems are routinely operated in the quan-
tum regime, allowing ground-state cooling by dynamical
broadening (γM > γM,0 ⇔ θM > π/4) even for n̄M � 1.
For the mechanical system, γM,0 is usually due to intrin-
sic dissipation alone, such as friction, whereas for the
spin oscillator, γS,0 (typically � γM,0) is often domi-
nated by optical power broadening induced by the co-
herent driving. For quantum cooperativities defined as
Cj := Γj/γ̃j,0, the value of CS is independent of the drive
power in this regime.

Conditional entanglement in a spin-optomechanical
system was previously analyzed for a pulsed quantum
non-demolition (QND) measurement of the hybrid EPR
variables [51] which projects the system into an entangled
state fulfilling Eq. (8); this approach has been demon-
strated for two atomic spin ensembles [8]. In contrast to
that protocol, steady-state unconditional entanglement
is a ready-to-use resource [9, 52] available on-demand at

any moment in time.
Fig. 2 presents the optimized unconditional steady-

state entanglement (8) as a function of Cj , illustrating
the relaxation of parameter requirements compared to
dissipative entanglement generation (R = 0, both sub-
systems are driven optically only by the common vacuum
field). Since the tunability of free-space spin systems
is limited by the atomic density, we henceforth assume
the bottleneck to be the spin system, characterized by
a maximally attainable CS, whereas CM is freely tun-
able and thus can be fixed at its optimal value [Fig. 2,
dashed-dotted curve]. Under these conditions, optimiza-
tion requires the two subsystems to be coupled asym-
metrically to the field: The optimal θM favors beam-
splitter interaction π/2 ≥ θM,opt > π/4, while for S,
the Stokes and anti-Stokes processes should be balanced,
θS,opt ≈ π/4 ⇔ ΓSB ≈ ΓSP (QND interaction) yielding
R < 0 [Fig. 3, inset]; this is the scenario illustrated in
Fig. 1. The resulting effective motional linewidth consid-
erably exceeds that of S, γM � γS, in the regime of sub-
stantial entanglement, thereby reversing the hierarchy set
by the intrinsic linewidths γM,0 � γS,0 while providing
strong dynamical cooling of the motional thermal noise
γ̃M,0, which is essential to unconditional operation. Since
γS ∼ γS,0 for θS ≈ π/4, the suppression of spin thermal
noise is due mainly to coherent cancellation in contrast
to previous work relying on dynamical spin cooling in the
dissipative regime (R ≈ 0) [9, 40, 41].

1 10 102 103
0.01

0.1

1

CS

ξ
g

1 10 102 103
10-4
10-3
10-2

0.01

0.1

1

Figure 3. Entanglement ξg as a function of spin cooperativity
CS for optimized coupling angles θS, θM and motional cooper-
ativity CM when R = 0 (thin black curves) and R 6= 0 (thick
red curves), when transmission loss is absent, ε = 0 (solid),
and present, ε = 0.1 (dashed). (Inset) Plot of −2

√
1− εR/γM

(right scale, brighter green curves) as a function of CS used
in evaluating the optimized curves of the main plot, and
the relative entanglement improvement (left scale, darker red
curves) of the conditional scheme over the optimal uncon-
ditional scheme (referenced to the latter) for ε = 0.1; the
conditional performance is evaluated using parameters opti-
mized for the unconditional scheme (dashed) and optimal con-
ditional parameters for QND readout θS = θM = π/4 (solid).
The fixed parameters are γS,0 = 2π × 5kHz, n̄S = 1, and
γM,0n̄M = 2π × 10kHz.

In the absence of transmission loss (ε = 0), the asymp-
totic scaling of the unconditional entanglement is ξg ≈√

[1 + r + 1/(2n̄S + 1)]/(2CS), where r = γ̃M,0/γ̃S,0. An
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improvement by up to a factor of 2 can be found
when comparing to the dissipative case (R = 0), ξg ≈√

2(1 + r)/CS [Fig. 3] (see [50] for derivations of scal-
ings). The presence of loss ε > 0 imposes a lower bound
ξg ≥

√
ε/(4− 3ε), which is also an improvement of up to

a factor of 2 compared to R = 0.
Comparison with conditional scheme.—Another

benchmark is the conditional steady-state entanglement
generated by performing a continuous homodyne mea-
surement of the light field emanating from the hybrid
system [41]. The evolution of the system conditioned
on the measurement record is described by a Stochastic
Master Equation [53] whose steady state can be found
numerically and even analytically in our regime of
interest, n̄M � 1 (see [50] for mathematical details).
For the fixed parameters considered above [Fig. 3],
we find in the limit of substantial entanglement that,
remarkably, the conditional steady-state entanglement
matches that of our unconditional scheme within a
few-percent margin, even when separately optimized
under the same conditions in the dynamically stable
regime (see Fig. 3, inset; supplementary details in [50]).
We thus conclude that our unconditional scheme leaves
practically no information in the output light about
the noise affecting the squeezed EPR variables. From a
practical standpoint this is beneficial as it allows optimal
performance without the need to measure the output
field nor perform the feedback required to make the
conditional entanglement unconditional. Moreover, the
dynamical cooling of the motional mode occurring in
the unconditional scheme facilitates technical stability
in the apparatus.

In conclusion, unconditional steady-state entangle-
ment in a cascaded negative-positive mass hybrid sys-
tem can be efficiently generated by engineering an asym-
metric interaction between the subsystems via the light
field connecting them. Applications for such a resource
of ready-to-use entanglement include quantum telepor-
tation [54] and key distribution [55] in hybrid quantum
networks. The scheme can compete with conditional
schemes, a fact which we speculate can be elucidated by
formally framing our unconditional scheme in terms of a
coherent-feedback master equation. The noise cancella-
tion technique inherent to the scheme enables sub-SQL
sensitivity when using the hybrid system as a continu-
ous force sensor, as will be elaborated on elsewhere [56].
Moreover, we have evidence that this sensing enhance-
ment is closely linked to the generation of EPR-type en-
tanglement studied here [50], warranting further study.
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