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We develop a new method to constrain primordial non-Gaussianities of the local kind using
unclustered tracers of the Large Scale Structure. We show that in the limit of low noise, zero bias
tracers yield large improvement over standard methods, mostly due to vanishing sampling variance.
We propose a simple technique to construct such a tracer, using environmental information obtained
from the original sample, and validate our method with N-body simulations. Our results indicate
that σf locNL

' 1 can be reached using only information on a single tracer of sufficiently high number

density.

I. INTRODUCTION

Understanding the initial conditions of the Universe
is major open problem in theoretical cosmology. The
statistical properties of the primordial curvature per-
turbations are a key ingredient of the success of the
ΛCDM model to explain the Universe as we observe it
today. In the simplest models of inflation[1–3], slow-
roll single field inflation, initial fluctuations are Guas-
sian for all practical purposes[4–6], but current obser-
vations still allow a large variety of models predicting
large Primordial Non-Gaussianities (PNG). This would
be for instance the case if cosmological perturbations
are not generated by the inflationary clock driving in-
flation, but rather by other fields[7–11]. This class of
models often goes under the name of multi-field infla-
tion. PNG contributing mostly to squeezed configura-
tions of the primordial curvature bispectrum are called
of the local kind. In terms of the primordial gravitational
potential Φ(x), they can be parametrized with a single
number f locNL, Φ(x) = φg(x) + f locNL(φg(x)2 −

〈
φ2g
〉
), with

φg a Gaussian random field.

A general prediction of multi-field models is |f locNL| &
1 [12], therefore setting the value of σf loc

NL
we want to

achieve with probes on local PNG. A significant detection
of f locNL will automatically rule out all single field models,
whereas σ(f locNL) ≤ 1 will exclude a large number of multi-
field scenarios. Measurements of the Cosmic Microwave
Background (CMB) by the Planck satellite have put the
tightest constraints on local PNG[13], f locNL = −0.8 ± 5.
Unfortunately we have mostly saturated the information
content in the CMB, and any further improvement will
come from the late time distribution of galaxies or any
other tracers of the Large Scale Structure (LSS) of the
Universe. The scope of this work is to present a novel
way to estimate PNG using galaxy positions.

PNG affect the dark matter distribution at the late
times in multiple ways, from the abundance of massive
clusters to the clustering of galaxies nth-point functions,
see [12, 14, 15] and references therein for a review. Next
generation of galaxy surveys are expected to improve the

errorbars on local PNG, DESI [16] and Euclid [17] should
get down to σf loc

NL
' 5 using power spectrum measure-

ments, and a combination of power spectrum and bispec-
trum in optical surveys could achieve σf loc

NL
' 1 [18, 19].

Recently [20] has also shown that a combination of LSST
galaxies with CMB data has similar constraining power
on PNG. For PNG constraint with intensity lines surveys
using emission lines see instead [21–23].

Most of the aforementioned analyses rely on the unique
signature of PNG in the LSS represented by the scale
dependent linear bias[24–26]. In the presence of local
PNG the relation between the galaxy and the underlying
dark matter field receive a contribution on large scales
absent in a Gaussian Universe

δg = bgδm , bg = b1 + f locNLbφα(k) (1)

where the new bias parameter can be related to the log-
arithmic derivative of the galaxy number density with
respect to σ8, the variance of the linear power spectrum
on 8h−1 Mpc scale, via [25]

bφ =
d log n̄

d log σ8
. (2)

Notice that bφ is independent of scale. We have also de-
fined the following transfer function from the primordial
potential to the density field,

α(k) =
3ΩmH

2
0

c2k2T (k)D(z)
(3)

with c the speed of light, H0 the present day Hubble
constant, T (k) the matter linear transfer function and
D(z) the linear growth factor normalized to 1/(1 + z)
in the matter dominated area. The non-Gaussian cor-
rection is generated by the coupling between long and
short scales generated during inflation, that modulates
the mean number density of galaxies as a function of the
long-wavelength modes. Since at low k the transfer func-
tion goes to unity one expects the non-Gaussian signal
on large scale to go as k−2. Equation 1 has been exten-
sively tested in numerical simulations, and overall good
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agreement is found with analytical calculations[27–29].
A further simplification is usually made in Equation 1,
that the mass function is universal, i.e. d log n̄/d log σ8 =
δc(b1 − 1), whith δc = 1.686. This is only an approxi-
mation, [29] found it to be accurate within 20% of the
measurements in the simulations, but it is useful to get
a rough idea of the amplitude of signal.

Despite the new signatures in the distribution of LSS,
measuring scale dependent bias in galaxy surveys is quite
challenging, for two main reasons. The first one is that
large scales in galaxy surveys are usually the most con-
taminated by systematic effects, for instance an incom-
plete knowledge of the window function or residual fore-
ground contamination [30–32]. The second one is that
large scales measurements intrinsically have the largest
noise because of sample, or cosmic, variance. Whereas
the first kind of issues we can hope to solve for in the
near future with better measurements and modeling, the
latter is a much more severe problem as it is directly re-
lated to the fact we observe only one realization of the
Universe. A possible solution has been proposed by [33],
who noticed that cross correlation of different tracers can
reduce the effect of cosmic variance on an estimate of f locNL.
The idea is that two tracers in the same region of the sky
will be sampling the same realization of the underlying
density field, so cosmic variance can be cancelled.

For this cross correlation method to work however one
would need the other main source of noise in the galaxy
power spectra, i.e. the shot-noise arising from the dis-
crete number of tracers, to be negligible compared to
the signal, a condition very hard to achieve in data even
for a single tracer. Multitracer techniques are also com-
plicated by the fact one has to find two galaxy popula-
tions in the same region of the sky with very different
linear biases but similar very low shot-noise [34–36] [59].
Even observing the full 3D dark matter distribution and
all the halos above 3 × 1012M� at redshift z = 1 one
barely reach σf loc

NL
' 1, in an extremely large volume of

50 (h−1 Gpc)3 [36, 37].
The scope of this work is to propose an alternative

route to sampling variance cancellation, using only a sin-
gle tracer with zero or slightly negative b1. The idea, as
we will describe in more details in Section II and Section
IV, is that for such a field the sampling variance itself is
negligible and the only source of noise is represented by
the finite number of tracers.

For the remainder of the paper we will use Planck best
fit cosmological parameters[38] with a fiducial value of
f locNL = 0.

II. SIGNAL TO NOISE AND SAMPLING
VARIANCE CANCELLATION

Let us start with a signal to noise estimate of the am-
plitude of the scale dependent bias in the galaxy power

spectrum using a Fisher formalism. For illustration pur-
poses only we will assume bφ follows the universality rela-
tion. Given a model of the covariance C(k) of the signal
and the noise of the power spectrum we have [39]

Fab = V

∫
d3 k

(2π)3
1

2
Tr

[
C−1 ∂C

∂θa
C−1 ∂C

∂θb

]∣∣
fid.

(4)

for the Fisher information of any pair of parameter θa,b
in a cosmological volume V . The parameters covariance
matrix is simply given by σab = (F−1)ab. For local PNG
the covariance reads

C(k, z) =Pgg(k, z) +
1

n̄(z)

= [b+ f locNLδc(b− 1)α(k)]2P (k, z) +
1

n̄(z)
(5)

where we have neglected redshift space distortion. From
now one we will use b for the fiducial value of linear bias.
Let us also assume b is perfectly known, as well as the
number density of objects, i.e. f locNL is the only free pa-
rameter. In this case the error goes as

σ−2
f loc
NL

= Ff loc
NLf

loc
NL
∝ b2(b− 1)2α(k)2P 2(k, z)(

b2P (k) +
1

n̄

)2 . (6)

Consider now two tracers with the same number den-
sity n̄, and the same PNG signal, i.e. the same value of
(b − 1)2, but one with positive and one with negative b,
e.g. b = 3, a rare cluster, and b = −1, a void [40, 41].
The goal is to make the value of Equation 6 as large as
possible. In the limit where shot-noise dominates over
the cosmic variance we have

Ff loc
NLf

loc
NL
−→ δ2c b

2(b− 1)2α(k)2n̄2P 2(k, z) (7)

and we see that the tracer with positive bias provides the
smaller errorbar at fixed number of objects. The other
limiting case, where the shot-noise is negligible compared
to cosmic variance, is however very different

Ff loc
NLf

loc
NL
−→ δ2c (b− 1)2α(k)2

b2
(8)

and the negative bias tracer performs much better than
the positive one. In a realistic analysis one always
marginalizes over bias factors, which implies the Fisher
matrix in real space is singular and therefore not invert-
ible for a fiducial b = 0, while Equation 8 suggests the
error on f locNL tends to zero. It is also important to keep in
mind that for b > 0 the cosmic variance limit is reached
at very low number densities, n̄ ' 10−4 [h/Mpc]3, af-
ter which there is no more improvement for a single
tracer[35–37].
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FIG. 1: The large scale bias and bφ of halos measured in the
N-body simulations, as a function of the environment defined
at RE = 8 h−1 Mpc/h. The upper panel shows the bias for
the high, continuous lines, and low, dashed lines, samples.
The three mass bins are displayed with blue, red, and green
lines for Mmin > 5×1011 , 1×1012, 5×1012M�/h respectively.
The bias of the parent sample is shown with dot-dashed lines.
The bottom panel displays bφ measured using Equation 2 in
the high and low fields compared to the response of the full
catalog (dot-dashed lines).

III. A ZERO BIAS FIELD

The analysis of the previous section suggests that, in
the low shot noise limit and at fixed f locNL response, the
closer to zero the bias is the better we can constrain local
PNG. This is saying that another way to cancel cosmic
variance would be to have zero power on large scales,
such that the only signal left is in PNG. This is a very
special feature of scale dependent bias, as the broadband
power does not carry any information about f locNL and the
fiducial value is fNL = 0. But how do we get a tracer
with b = 0? Galaxy bias for halo mass selected samples
is never below 0.6 [42] and galaxy samples of the current
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FIG. 2: Measurements of stochasticity in the high and low
fields multiplied by the corresponding number density n̄.
Colour coding as in Figure 1. The horizontal dotted black
line shows the Poisson expectation.

and next generation of redshift surveys will all have bias
larger than one and therefore are not an option. A LSS
tracer however can be defined with more than just one
number, e.g. mass for halos or observed flux/luminosity
for galaxies, and we can use other criteria to construct
our sample. The classic example of negative bias tracers
are voids [40], commonly identified as underdense region
in a galaxy distribution. Unfortunately voids often have
large negative bias [41], b < −1, or if they have bias close
to zero their number densities is extremely low.

A simple selection can be done using local density: if
galaxies live in a dense environment they will be more bi-
ased than the galaxies in a low density environment, even
for the same luminosity [43–50]. One can show that be-
sides halo mass the environment is the main contributor
that sets the bias [46, 51].

Since in galaxies surveys the underlying 3D dark mat-
ter field is not observable, we will define the local density
as the value of the mass weighted halo field in a sphere
of radius RE . The choice of the environmental scale is
driven by two competing effects. First, RE should be
large enough to avoid noise coming from the sparsity of
the sample to affect our estimate of the environment. At
the same time we want also to minimize RE , since at
scales kRE & 1 the presence of a smoothing window will
make the interpretation of the results more difficult.

To test this idea we have run a set of N-body simu-
lations of a Planck cosmology using the GADGET code
[52], with box size L = 500 h−1 Mpc and 10243 particles.
We then found Friends-of-Friends halos and divided the
full halo catalogs in three sample with different mini-
mum mass Mmin = 5 × 1011, 1 × 1012, 5 × 1012M�/h.
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The corresponding comoving number densities are n̄ =
78, 32, 6.4,×10−4 [h/Mpc]3 at z = 1. For each halo in
the catalogs we define its environmental halo density at
RE = 8 h−1 Mpc, ∆h, using only the distribution of sor-
rounding halos. Then for a given threshold value ∆h,
halos in regions denser than ∆h form one sub-sample,
called high bias halos, and all the others make the low
bias sub-sample. Measurements at RE = 6, 10 h−1 Mpc,
yield similar conclusions.

Results are shown in Figure 1. The upper panel present
the measurement of the bias as a function of the envi-
ronment. The bias values have been obtained from a
fit at low k of Phm(k)/Pmm(k), where h = {low,high},
as a function of the environmental threshold. Error-
bars are too small and will not be displayed. For refer-
ence the original samples have bias b = 1.32, 1.48, 2.13,
shown as dot-dashed lines (blue, green and red respec-
tively). We notice that once split by the environment,
all the halos have very similar bias irrespective of their
mass[44, 46, 51]. When the density is around 1.7 we can
identify a sample, containing roughly 25 % of the halos
in the original catalogs, with zero bias, and the high field
has bias of roughly three.

In any data analysis it is also important to quantify
the noise. For halos or galaxies the shot-noise is usually
considered Poissonian [53–55], but we expect that the
high and low bias fields will deviate from the Poisson
regime as a result of the exclusion region imposed at RE .
The simplest way to quantify the noise is to compute the
stochasticity between the high/low bias fields and the
dark matter in the simulations

Sh(k) = Phh(k)− P 2
hm(k)

Pmm(k)
. (9)

In the low-k limit the above expression should approach
1/n̄ if halos are a Poisson process. In Figure 2 we show
the product of S(k) with n̄, and indeed find large devia-
tions from the simple shot-noise, in both the high and the
low sub-samples. This will affect our Fisher calculation,
thus we fit for S(k) at low k and consider the constant
term as a renormalized shot-noise value.

Using the Gaussian simulations we can also measure
the response to fNL, bφ, using Equation (2). This is the
very definition of scale dependent bias and it is more ac-
curate than measuring it from simulations that include
PNG. For this purpose we ran an additional set of simu-
lation with slightly different value of the fiducial value of
σfid8 , we choose σ±

8 = 0.833±0.02, and then took the nu-
merical derivative according to Equation (2). The results
are shown in the bottom panel of Figure 1. Compared
to the horizontal lines, which correspond to the response
of the three parent samples, we find that zero bias trac-
ers have in general larger response. Conversely the high
bias field is less sensitive to PNG. Since environment and
formation time are strongly correlated [50], i.e. recently
formed halos live in denser environments, our results are
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FIG. 3: Error on σf locNL
for a survey of volume V =

50 (h−1 Gpc)3 at z = 1.The standard analysis for a single
halo population is in blue, while combining the high and low
bias fields results in the red continuous line. The dashed red
line shows the case of RE = 6h−1 Mpc/h.

qualitatively in agreement with [25, 56], who found that
old (young) halos have smaller (larger) bφ than average.

IV. FORECAST

In the previous section we presented measurements in
the simulations of the signal and the noise required to
perform a Fisher analysis of PNG. We consider an hypo-
thetical case of a survey at z = 1 in a V = 50 (h−1 Gpc)3

volume and forecast the error on σf loc
NL

for the three
mass bins discussed previously. Numbers for surveys like
DESI/Euclid roughly corresponds to the lower mass bin.
Our Fisher matrix has two free parameters, the linear
bias b and f locNL, for bφ we use the measurements shown in
Figure 1, and we include modes from kmin = 2π/V 1/3 to
kmax = 0.075 hMpc−1. Figure 3 is the main result of this
paper. The blue line is the standard single tracer analy-
sis, for which we find higher number densities yield worse
errorbars. This happens because for halos, i.e. positive
biased tracers, we are in the cosmic variance dominated
regime, and high bias wins over high number densities.

For the zero bias fields we assume measurements of
the auto power spectrum of the two samples, and their
cross-correlation. The improvement over the parent sam-
ples is dramatic, the gain is a factor of three or larger for
the mass bins considered in this paper. Whereas one
would expect that high number densities will always be
better for zero bias tracers, our analysis suggests this
is not the case. The reason is that the noise in the
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low bias sample is much larger than the Poisson value,
see Figure 2, making the zero bias field less constrain-
ing for dense samples. The red dashed lines presents
the same analysis for RE = 6 h−1 Mpc/h. The sam-
ple with Mmin = 5 × 1012M�/h is too sparse to re-
turn a sensible measurement of the environment, and it
is therefore not shown. The constraint improves over
the case of RE = 8 h−1 Mpc/h, mostly due to the lower
noise levels, according to the discussion in Sec. III. For
n̄ ' 10−3 (Mpc/h)−3 at z = 1 we find σf loc

NL
' 1. Com-

pared to the analysis in [36, 37], to achieve this constraint
we did not have to include any information about the
dark matter density field.

V. CONCLUSIONS

In this paper we have shown how zero bias tracers of
the LSS could improve our knowledge of local PNG. Our
analysis takes advantage of the fact that for such tracers
cosmic variance can be made arbitrarily small and the
only source of variance in a measurement of the power
spectrum becomes the shot-noise. Given a halo catalog,
we proposed and tested in simulations a simple method
to select such a tracer, using environmental information
obtained from the original sample itself. We took partic-
ular care in defining the noise of this new field, showing
that it significantly deviate from the Poisson value. Us-
ing measurements in the simulations we then forecasted
the error on f locNL and found factor of three improvement
in σf loc

NL
over standard positive bias tracers, for a variety

of halo mass thresholds. Further gains in constraining
power could be obtained by optimal weighing the halos
or galaxies according to [37]. A real data analysis will
be done in redshift space, where one could exploit the
fact that the power spectrum becomes proportional to
b + f(z)µ2, where f(z) is the linear growth factor and
µ is the cosine of angle between the the mode k and
the line of sight to the galaxies. Indeed for some value
of µ we could have b ' −fµ2. In this respect the two
tracers one needs for the sampling variance cancellation
technique of [33] were already there in the first place, as
one can use the real density field and the velocity field
generating RSD. One could also imagine, with enough
galaxies at hand, to optimize the analysis to cancel cos-
mic variance in several µ-wedges. We should however
keep in mind that in redshift space non-linear selections
of galaxies, like the one discussed in this paper, generate
velocity bias [57, 58]. We plan to return to the case of
redshift space distortions in a forthcoming paper.
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