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We show that the community structure of a network can be used as a coarse version of its embedding in a
hidden space with hyperbolic geometry. The finding emerges from a systematic analysis of several real-world
and synthetic networks. We take advantage of the analogy for reinterpreting results originally obtained through
network hyperbolic embedding in terms of community structure only. First, we show that the robustness of a
multiplex network can be controlled by tuning the correlation between the community structures across different
layers. Second, we deploy an efficient greedy protocol for network navigability that makes use of routing tables
based on community structure.

A wealth of recent publications provides evidence of the
advantages that may arise from thinking of real-world net-
works as instances of random network models embedded in
hidden metric spaces [1, 2]. In this class of models, every
node is represented by coordinates that identify its position in
the underlying space, and the distance between pairs of nodes
determines their likelihood of being connected. The most pop-
ular formulation of spatially embedded network models relies
on hyperbolic geometry [3, 4]. Hyperbolic network geome-
try emerges spontaneously from models of growing simpli-
cial complexes [5]. Hyperbolic geometry appears the natural
choice for networks with broad degree distributions, under the
hypothesis that the generating mechanism for edges in the net-
work is a compromise between popularity of individual nodes
and similarity among pairs of nodes [6]. Popularity is rep-
resented by the radial coordinate of nodes in the hyperbolic
space, while similarity is accounted for by the difference be-
tween angular coordinates of pairs of nodes. Hyperbolic maps
are useful in practical contexts, as generating efficient routing
protocols in information networks [7], characterizing hierar-
chical organization of biochemical pathways in cellular net-
works [8], and monitoring the evolution of the international
trade network [9]. However, thinking of networks as embed-
ded in the hyperbolic space is important from the theoretical
point of view too. Growing network models that rely on hy-
perbolic geometry provide a genuine explanation for the emer-
gence of power-law degree distributions from local optimiza-
tion principles only [6]. Further, recent work show that the
main features of the percolation transition in multiplex net-
works can be predicted by simply accounting for inter-layer
correlation among hyperbolic coordinates of nodes [10, 11].

Popularity and similarity are core features of models used
in network hyperbolic embedding. They are, however, central
in another heavily used model in network science: the degree-
corrected stochastic block model (SBM) [12]. The SBM as-
sumes a hidden cluster structure where nodes are divided into
a certain number of groups. This classification accounts for
similarity, as pairs of nodes have different likelihoods of be-
ing connected depending on their group memberships. The

degree correction provides instead a natural way of account-
ing for the popularity of the individual nodes. The SBM is
generally considered in the context of graph clustering, repre-
senting a generative network model with built-in mesoscopic
structure [13]. The SBM is used in the formulation of prin-
cipled community detection methods [14]. These methods, in
turn, are equivalent to other well-established techniques for
community detection, giving therefore to the SBM a central
role in the graph clustering business [15].

At least superficially, the analogy between the ideas of hy-
perbolic embedding and community structure is apparent. In a
recent paper, Wang et al. showed that information about com-
munity structure can be used to improve accuracy and effi-
ciency of standard algorithms for hyperbolic embedding [16].
Also, previous work was devoted to the development of net-
work models embedded in hyperbolic geometry with the ad-
dition of a pre-imposed community structure [17–19]. We
are not aware, however, of previous attempts to investigate
the theoretical and practical similarity of the two approaches
when applied independently to the same network topology.
This is the purpose of the present paper.

We assume that the topology of an undirected and un-
weighted network G with N nodes is fully specified by its
adjacency matrix A, whose element Ai, j = A j,i = 1 if a connec-
tion between nodes i and j is present, or Ai, j = A j,i = 0, other-
wise. The hyperbolic embedding of the network G consists in
a pair of coordinates (ri, θi) for every node i ∈ G. The quantity
ri is the radial coordinate of node i; θi is its angular coordinate.
We assume that this information is at our disposal. The way
we acquire such a knowledge depends on whether the network
analyzed is synthetic or real. For synthetic graphs, we con-
sider single instances of the popularity-similarity optimization
model (PSOM) [6], so that hyperbolic coordinates correspond
to ground-truth values of the model. We analyze also sev-
eral real networks, where coordinates of nodes are obtained
by fitting graphs against the PSOM. In this second scenario,
we either rely on embeddings publicly available [10, 20] or we
apply publicly available algorithms to the graphs [20]. Details
are provided in [21]. We remark that the PSOM is the model
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of reference in most of the hyperbolic embedding techniques.
It assumes the existence of an underlying hyperbolic space,
and consists in a random growing network model where nodes
are connected depending on their distance, and the value of
other model parameters, such as average degree 〈k〉, exponent
γ of the power-law degree distribution P(k) ∼ k−γ, and tem-
perature T . When a real network is fitted against the PSOM,
the parameters 〈k〉 and γ of the model are determined on the
basis of the observed network, while T is treated as a free pa-
rameter [20]. Its value may be set to the one that yields the
best match between theoretical and numerical results for the
distance dependent connection probability [38]; when hyper-
bolic embedding is used in greedy routing, one may look for
the T value that results in the highest success rate [20]. The
radial coordinate ri of every node i is uniquely identified by its
degree ki, hence ri doesn’t require to be truly learned. The an-
gular coordinate θi for every node i ∈ G is instead treated as a
fitting parameter. There are various techniques to perform the
fit, including approximated optimization algorithms [20, 38],
and ad-hoc heuristic methods [39, 40].

In our analysis, we further assume to know the commu-
nity structure of the graph G, consisting in a flat partition
of the network into C total communities, where every node
i ∈ G is associated with a discrete-valued coordinate σi =

1, . . . ,C. Algorithms for community detection are numer-
ous [13]. Here, we rely on results obtained by three popular
methods: the Louvain algorithm [41], Infomap [42], and the
algorithm by Ronhovde and Nussinov [43]. We remark that,
in the degree-corrected SBM, the probability for nodes i and
j to be connected is a function of σi, σ j, ki and k j. Hence,
the graph G can be thought as embedded into a community
structure, where every node i is de facto represented by the
coordinates (ki, σi).

A direct comparison between the hyperbolic embedding
and the community structure of the graph G consists in a com-
parison between the coordinates of the individual nodes in the
two representations. Further, as the degree of the nodes triv-
ially matches in both representations, the comparison reduces
only in matching angular coordinates θs and group member-
ships σs. From the numerous empirical tests we conducted
on both real and synthetic networks, two main conclusions
emerge. First, networks usually considered in hyperbolic em-
bedding applications are highly modular, in the sense that par-
titions found by community detection algorithms correspond
to very large values of the modularity function Q [44] (see
Figure 1 and [21]). Second, nodes within the same commu-
nities are likely to have similar angular coordinates. We note
that this second finding is in line with what already shown in
Ref. [16]. To quantify coherence among angular coordinates
of nodes within the same community g, we first define the
variables ξg and φg with

ξg ei φg =
1
ng

N∑
j=1

δσ j,g ei θ j . (1)

δx,y = 1 if x = y and δx,y = 0, otherwise. The r.h.s. of Eq. (1)

Figure 1. Hyperbolic embedding and community structure for real
and synthetic networks. (a) We compare the hyperbolic embedding
of the IPv4 Internet with its community structure. Every point rep-
resents a node in the largest connected component of the graph. Po-
sitions are determined by the radial and angular coordinates of the
nodes in the hyperbolic embedding of the network [10]. We use the
best partition found by the Louvain algorithm to determine the com-
munity structure of the graph [41]. The partition consists of C = 31
communities. Colors of the points identify community memberships.
The value of the modularity is Q = 0.61, while angular coherence is
ξ̄ = 0.72. (b) We consider 39 real-world networks and 2 instances
of the PSOM, and compare their community structure and hyper-
bolic embedding (see details in [21]). The plot displays each network
on the (Q, ξ̄)-plane. We show results obtained using Louvain (black
squares) and Infomap (red circles) [42].

stands for the sums of vectors in the complex plane of the type
ei θ = cos(θ) + i sin(θ) of all nodes in group g. The vectorial
sum is divided by the community size ng to obtain an aver-
age vector for the community. φg is the angular coordinate of
community g. The module 0 ≤ ξg ≤ 1 indicates how coher-
ent are the angular coordinates of the nodes within group g.
Note that the definition of Eq. (1) resembles the one used for
the order parameter of the Kuramoto model [45]. We finally
measure the angular coherence of a partition as the weighted
average

ξ̄ =
1
N

C∑
g=1

ngξg . (2)

By definition, we have that 0 ≤ ξ̄ ≤ 1. For all networks
considered in our analysis (see Figure 1 and [21]), angular
coherence is typically large.

Our empirical tests demonstrate that strong angular coher-
ence within communities of strongly modular networks is a
quite robust feature of both synthetic and real systems. This
finding tells us that the analogy between community structure
and hyperbolic embedding may extend beyond the mere simi-
larity among their ingredients. The following examples show
that the analogy is useful also in the interpretation of physical
properties of networks and the design of practical algorithms
on networks.

Our first example regards the rephrasing, in terms of com-
munity structure only, of a result obtained by analyzing the
hyperbolic embedding of multiplex networks. In two recent
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papers [10, 11], Kleineberg and collaborators found that inter-
layer correlation between hyperbolic coordinates of nodes in
multiplex networks is a good predictor for the robustness of
a system under targeted attack. Specifically, they found that,
when correlation among angular coordinates is high, the per-
colation transition is smooth. Instead, multiplex networks
characterized by a small value of inter-layer correlation ex-
hibit abrupt percolation transitions. The finding was initially
obtained for real-world multiplex networks. A theoretical
explanation was then given in terms of a synthetic network
model [11]. To further support the analogy between hyper-
bolic embedding and community structure that we are argu-
ing for in this paper, we replicated all results of Ref. [11] us-
ing community structure only. First, we analyzed the same
real-world multiplex networks considered in Ref. [11]. We
found that their robustness can be predicted very well by the
level of correlation among the community structures of the
layers [21]. Then, we provided a theoretical explanation. We
replaced the network model by Kleineberg et al. with a vari-
ant of the SBM known in the literature as the Lancichinetti-
Fortunato-Radicchi (LFR) benchmark graph [46]. The LFR
model mostly differs from the standard SBM for relying on
heterogeneous distributions of node degrees and community
sizes. In our model for multiplex networks [21], we first gen-
erate a single LFR graph that is used as the topology for both
layers. We then exchange the node labels in one layer to de-
stroy edge overlap and degree-degree correlation. We con-
sider two distinct scenarios. In the first case, we exchange the
label of every node with the one of a randomly chosen node
from the same community. This allows us to maintain per-
fect correlation between the community structure of the two
layers. In the second case, we exchange the labels of a num-
ber of randomly sampled nodes such that the edge overlap
between the layers equals the value obtained in the first ran-
domization scheme. This second recipe completely destroys
correlation between the community structures of the two lay-
ers. In Fig. 2a, we show the phase diagrams for instances of
the multiplex model when relabeling uses information about
the community structure of the graph. Here, the community
structure is strong, in the sense that the fraction of external
connections per node is only µ = 0.1. The transition appears
smooth, and becomes smoother as the size of the model in-
creases. This is an indication that, in the limit of infinitely
large LFR graphs, the percolation transition is likely continu-
ous. In Fig. 2b, we consider the second relabeling scheme that
doesn’t account for community structure. The resulting dia-
grams indicate that the percolation transition is abrupt. The
level of correlation among community structure of the two
layers can be decreased by increasing µ, so that community
structure itself becomes less neat. This is done in Figs. 2c and
d, where the transition appear abrupt no matter how the labels
of the nodes are relabeled. In [21], we report results for differ-
ent parameter values of the LFR model. Results confirm our
claim that the extent of correlation between the community
structure of the layers of a multiplex can be used to explain

Figure 2. Robustness of multiplex networks with correlated com-
munity structure. We measure the relative size of the largest mutu-
ally connected cluster as a function of the fraction of nodes removed
from the system. The synthetic multiplex graphs are obtained using
the recipe described in the text, where two Lancichinetti-Fortunato-
Radicchi (LFR) networks with size N are coupled together. The LFR
models are such that: the average degree is 〈k〉 = 6; the maximum
degree is kmax =

√
N; node degrees k obey a power-law distribution

P(k) ∼ k−γ with exponent γ = 2.6; there are C =
√

N communities
of identical size S =

√
N. For every N, we show the results for five

distinct instances of the model. (a) LFR graphs are generated with
µ = 0.1. Labels are exchanged only among nodes within the same
clusters. All nodes are considered for relabeling at least once. (b)
Same as in panel a. However, relabeling of nodes is not constrained
by community structure. The number of nodes that are relabeled is
such that the edge overlap among layers is the same as in panel a [21].
(c and d) Same as in panels a and b, respectively, but for LFR graphs
constructed using µ = 0.3.

robustness properties of the system under targeted attack.

Our second example focuses on greedy routing [2, 7]. To
be brief, the scenario considered is the following. A packet
originated by node s must be delivered to node t. The packet
can navigate the network by walking at each step on an edge.
The packet moves on the network till it reaches its destination
t, or it visits twice the same node. In the first case, the packet
is correctly delivered. In the second case, the packet is con-
sidered lost, and it is discarded. The goal of a good routing
strategy is to deliver packets with high probability and with a
small number of steps, for any randomly chosen pair of source
and target nodes s and t. Hyperbolic embedding turns out to
be very useful in the formulation of a greedy strategy, where
individual steps are determined on the basis of the distance
among nodes in the hyperbolic space. Specifically, if a mes-
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sage is at node i, then the next move will be on the node

j (i)
(best) = arg min

j∈Ni

d( j, t) , (3)

whereNi is the set of neighbors of i, and d( j, t) is the distance
between nodes j and t. The greedy technique is computation-
ally feasible as every node needs to know only the identity
and the geometric coordinates of its neighbors. The regimes
of effectiveness of the routing method have been systemati-
cally studied in artificial network models [2]. The technique
has been proven to be extremely effective on some real-world
topologies [2, 7]. We devised a new greedy routing protocol
that makes use of the cluster structure of a network instead of
its hyperbolic embedding. Specifically, we replaced the defi-
nition of distance in the hyperbolic space between nodes with
the fitness

d( j, t) = βDσ j,σt − (1 − β) ln k j , (4)

where k j is the degree of node j, and σ j and σt are the indices
of the communities of nodes j and t, respectively. Dσ j,σt is the
length of the shortest path between communities σ j and σt

calculated on a weighted supernetwork in which supernodes
are communities of the original network. Each pair of su-
pernodes g and q is connected with a superedge with weight

Figure 3. Performance of community-based routing. (a) We con-
sider single instances of the growing network model of Ref. [38]
with N = 5, 000 nodes, 〈k〉 = 5, and degree exponent γ = 2.1. Dif-
ferent symbols and colors refer to different values of the temperature
T . The plot shows how success rate of the community-based greedy
routing strategy changes as a function the average size of the com-
munities. Communities are identified using the algorithm by Ron-
hovde and Nussinov [43]. Their number can be varied by changing
the resolution level of the algorithm. Dashed lines are obtained on
the same networks but using hyperbolic greedy routing. (b) Same
as in panel a, but for real networks. We consider the following net-
works: the Internet at the level of autonomous systems (AS) [47]; the
worldwide air transportation network (AT) [48]; the European road
network (ER) [49]; the peer-to-peer network (P2P) [50]; the arXiv
collaboration network [51]. For all the networks (except arXiv) the
dashed lines are obtained by varying the temperature T in the algo-
rithm for hyperbolic embedding introduced in Ref. [20]; for the arXiv
network the dashed line shows the result for the optimum hyperbolic
coordinates whose data was available in [10]. Details can be found
in [21].

1 − ln ρg,q; here ρg,q is the probability that, in the original net-
work, a randomly chosen node in community g has an edge
to community q [21]. The term ln k j in Eq. (4) serves to per-
form degree correction. The factor 0 ≤ β ≤ 1 serves to con-
trol the relative importance of one factor over the other. β
plays a similar role as of the temperature T in hyperbolic rout-
ing protocols [20], and its value may be appropriately chosen
with the goal of optimizing the success rate in the delivery of
messages [21]. The routing protocol based on Eq. (4) is still
computationally efficient as long as the total number of com-
munities C grows sub-linearly with the size of the graph N.
In the extreme case, where every community is formed by a
single node, so that C = N, the method will be 100% accu-
rate in delivering packets, but also computationally expensive.
In Figure 3, we display the performance of community-based
greedy routing as a function of the mean size of the com-
munities. We study the performance on both synthetic and
real-world networks. The number of communities is tuned by
changing the resolution parameter in the algorithm by Ron-
hovde and Nussinov [43]. Success rates of the community-
based greedy protocol are always very good, as long as com-
munities are not too large.

In summary, we showed that looking at a network as em-
bedded in a hyperbolic geometry is similar, both in theory
and practice, to pretending that the network is organized into
communities, provided that community structure is detected
by a method that accounts for the degree of the nodes. Our
finding provides evidence that the inter-community structure
in networks may have geometric organization, meaning that
at the global level, geometry dominates, while at the local
scale, community memberships prevail. Thus, real networks
may be modeled by a graphon [52] consisting of a mixture
of latent-spatial and block-like structures. This fundamental
model has the potential to generate further understanding of
physical processes, such as spreading and synchronization, in
real networks.
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Sci. Rep. 6, 33441 (2016).

[10] K.-K. Kleineberg, M. Boguná, M. Á. Serrano, and F. Pa-
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[18] G. Garcı́a-Pérez, M.Á. Serrano, and M. Boguñá, arXiv preprint

arXiv:1707.09610 (2017).
[19] A. Muscoloni and C. V. Cannistraci, arXiv preprint

arXiv:1707.07325 (2017).
[20] F. Papadopoulos, R. Aldecoa, and D. Krioukov, Phys. Rev. E

92, 022807 (2015).
[21] See Supplemental Material [url] for the analysis of additional

real and synthetic networks, which includes Refs. [22-37].
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