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Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes,
where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery ef-
fect. Using fully kinetic 3-D simulations, we show the full evolution of the magnetic fields and plasma
in these experiments including self-consistent magnetic field generation about the expanding plume.
The collision of the two plasmas drives the formation of a current sheet, where reconnection occurs
in a strongly time-and space-dependent manner, demonstrating a new 3-D reconnection mechanism.
Specifically, we observe fast, vertically-localized Biermann-mediated reconnection, an inherently 3-D
process where the temperature profile in the current sheet coupled with the out-of-plane ablation
density profile conspires to break inflowing field lines, reconnecting the field downstream. Fast
reconnection is sustained by both the Biermann effect and the traceless electron pressure tensor,
where the development of plasmoids appears to modulate the contribution of the latter. We present
a simple and general formulation to consider the relevance of Biermann-mediated reconnection in

general astrophysical scenarios.

The Biermann battery effect [1, 2] is one of the few
mechanisms known to spontaneously generate magnetic
fields in plasmas. In the context of astrophysics, while
too weak to generate the present-day observed cosmic
magnetic fields, the Biermann battery effect is widely re-
garded as a possible source of the seed magnetic field,
subsequently amplified to observed present-day fields by
protogalactic turbulence [2]. This effect, which is the re-
sult of non-collinearity between density and temperature
gradients (%—Itg x Vn x VT), has been shown in High En-
ergy Density (HED) plasmas to generate strong magnetic
fields (10-100 T) during intense laser heating [3-9, 11]. In
such experiments [3-5, 11], when two plumes are ablated
adjacently, the oppositely polarized fields collide and un-
dergo magnetic reconnection; this is the universal process
in which the magnetic field threaded through plasma un-
dergoes a fundamental topological change, often resulting
in violent conversions of field energy into kinetic energy.
HED laser plasmas provide a platform to study mag-
netic reconnection, which is intrinsic to many phenom-
ena throughout plasma physics [12], from the sawtooth
instability in magnetic fusion confinement devices [13]
to solar flares [14] and disturbances in Earth’s magneto-
sphere [15].

Recent HED experiments have observed interesting ef-
fects associated with reconnection, including flux annihi-
lation [4, 10], stagnation of reconnection [11], and particle
jets [3, 7]. Kinetic simulations of HED laser experiments
based on model profiles have provided valuable insight
into reconnection dynamics in this regime, including flux-
pileup near the reconnection layer [16], plasmoid forma-
tion [17], the role of the Nernst effect [18], and particle

acceleration by reconnection [19]. Particle-in-cell (PIC)
simulations have also modeled Biermann-battery genera-
tion in expanding plasmas [20]. One such study inves-
tigated reconnection in electron-dominated relativistic
plasmas driven by short-pulse lasers [21], but to date the
full 3-D evolution of magnetic reconnection within HED
plasmas in the magnetohydrodynamic (MHD) regime (L
/ d; > 1, where L is the system size and d; is the ion
skin depth) has not been investigated.

In this Letter, we present the first 3-D, end-to-end,
fully kinetic computational study of magnetic reconnec-
tion within a recent HED experiment [6], which captures
both the self-consistent initial field generation by the
Biermann effect and reconnection within the fully 3-D
geometry of the system. This is in contrast to previ-
ous HED reconnection simulations where the magnetic
fields and plasma profiles are set in the initial conditions.
We present in detail how reconnection proceeds, includ-
ing how the development and ejection of plasmoids mod-
ulates the reconnection rate. The simulations also re-
veal that the Biermann battery effect can play a direct
and significant role in 3-D magnetic reconnection, where
a local T, maximum in the current sheet coupled with
an out-of-plane density gradient conspires to reconnect
flux via Vn x VT, a process we refer to as “Biermann-
mediated reconnection.” We emphasize that observing
this mechanism requires a full 3-D simulation, and it
is distinct from previously-documented 2-D reconnection
mechanisms, both in the strong guide-field case involv-
ing the electron scalar pressure [22, 23] and in recon-
nection without a guide field involving the off-diagonal
components of the electron pressure tensor [16, 24]. We



introduce a new dimensionless number that enables the
evaluation of the importance of the Biermann effect in re-
connection and demonstrate its application to laboratory
and space plasmas.

For direct comparison, presented simulations are mod-
eled after a recent reconnection experiment at the
Shenguang-II (SG-II) laser facilities [6], for which we ob-
serve general agreement between the field and plasma
evolution in simulation and experiment. The results of
our simulation have potentially important implications
for reconnection and energy conversion in many 3-D re-
connection systems. For example, in galactic dynamo
theories where Biermann fields provide the seed mag-
netic field, it is implicitly assumed that fast reconnection
occurs somehow to facilitate the breaking and reconfig-
uration needed to form large-scale magnetic fields [2].
Our work demonstrates that in addition to seed genera-
tion, the Biermann effect might also facilitate the recon-
nection required for the success of a large-scale dynamo.
Furthermore, this work is especially relevant to systems
with large density and temperature gradients, such as in
indirect and direct-drive inertial confinement fusion ex-
periments [25, 26] and reconnection in many astrophys-
ical scenarios including in Earth’s magnetosheath [27],
the heliopause [28], and in simulations of turbulent re-
connection, including the highly turbulent reconnection
upstream of high-Mach number shocks [29].

We use the following formulation of generalized Ohm’s
law in order to quantitatively account for the contribu-
tions to the electric field, which in turn accounts for B-
field evolution via Faraday’s law,
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Each term on the RHS has a physical interpretation; the
first two terms are the contribution due to ion flow and
the Hall effect. The third term represents the contri-
bution due to the scalar electron pressure. Via Fara-
day’s law, this term contributes to %—If as the Biermann
battery effect, —n%eVne x VT,, and is capable of gen-
erating or destroying magnetic flux depending on tem-
perature, density, and field configurations. The fourth
term, the traceless pressure tensor contribution (where
Il = P. — p.I3) is well-documented to be important
in collisionless 2-D reconnection layers [24]. This term
includes the effect of viscosity and contributions from
pressure tensor anisotropy, which is associated with the
Weibel instability [30]. Re; is the collisional momentum
transfer between electrons and ions and via Faraday’s law
contributes to 86—? as both resistive diffusion and Nernst
advection via the thermal force. Noting that reconnec-
tion is characterized by a finite out-of-plane E-field inside
the current sheet, we use Eq. 1 to quantify the contribu-
tion to the reconnection electric field from the Biermann-

battery effect, which requires out-of-plane variation, and

from the traceless pressure tensor term [24].

Simulation setup: We use the PSC code [31], a fully
kinetic, explicit particle-in-cell code employing a binary
Coulomb collision operator, to model the reference ex-
periment. Shown in Fig. 1(a), simulations are initi-
ated by heating electrons with a radial profile H (z,y)
expanding plasma plume. All boundaries are periodic
where the heated plume collides with itself along the in-
flow dimension (X), which is much shorter than the out-
flow (Y') and vertical (Z) dimensions. From the observed
simulation ablation profiles we measure ng,;, and T, the
ablation density and temperature [32], where the heat-
ing operator magnitude is tuned to obtained the desired
Ta.p- We can then define the ablation ion skin depth,
dio = (M;/nayZe*po)/? and the sound speed, Cs,ab =
(ZkyTop/M;) /2. Together these define the ablation
timescale tq = dio/Cls,qp and the characteristic magnetic
field By = v/ ponavkyTyp. Normalizing our simulations to
ablation units allows us to match PSC results to phys-
ical values of Nap phys, Lubphys, dio,physs and tqpnys ob-
tained from a similar analysis of radiation-hydrodynamic
simulations performed with the DRACO code [33]. For
reference, Nap phys = 3 X 10%"m—3, Tobphys = 2 keV,
Cab,phys ~ 300 km/s, and Bgpnys = 1300 T. Ref. [32]
presents the SG-II experimental parameters and the full
computational scheme for modeling heating, ablation,
and matching to DRACO simulations. In contrast to
Ref. [32], we extend our simulations from 2-D (XZ) to
3-D (XYZ), allowing reconnection.

within a thin, dense target, producing an

We use a compressed electron-ion mass ratio,
Zme/M; = 1/64, (Z = 1) and a compressed ratio be-
tween Ty, and the electron rest mass energy Top/ Mmec? =
0.04. We compress these values far below the physical ra-
tios while achieving convergence in our results, provided
Zme/M;, Tap/mec® < 1; in analogous 2-D simulations,
ratios down to Zm./M; = 1/400 show convergence with
Zme/M; =1/64. A box of 80 x 160 x 480 d;o(Ly, Ly, L)
is used, with the grid cell spacing Ax < dco, 5Ap,ab,
where Ap qp = v/€okvTap/Nave?. The SG-II heating ra-
dius Ry /d;o = 12 with bubble separation L, /d;; = 80.
Further parameters include the target width = 2d;g
the target density = 2.5n4, the background density
= 0.001 ngp, the target and background T, = 0.025 Ty,
and 50 second-order-shaped particles are used per cell
at nqp. The collisionality, described by A, the mean
free path of electrons at T,; and ngp, is matched to the
electron skin depth d.o to perserve the correct collisional
diffusivity of the magnetic field; Appp/deo = 20. While
Amgp is resultingly mismatched on d;o scale, throughout
the plume collision region we recover the correct collision-
ality regime, i.e. Amfp > Opec, Where d,cc is the current
sheet width.

Fig. 1 and Fig. 2 respectively show 3-D snapshots and
2-D profile slices of the SG-II magnetized plume colli-
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FIG. 1. Collision of self-magnetized plume with itself at four times, where two inflow (X) periods are shown. (a) Early time
snapshot detailing setup of simulation; shown are two planar slices of n., one through the target (z = 0dio) and one through
the inflow, vertical plane (XZ, y = 0d,0), magnetic field lines in yellow, |B|/Bo = 0.05 contour in blue, and T./Ta = 0.75
contour in red. (b) Demonstration of Biermann-mediated reconnection at time t = 11.2¢4. (¢, d) Top down views of later time
field evolution (t = 14.6t4 and 26.6t4 respectively), including plasmoid ejection and current sheet stretching- here the blue
contour represents |B|/Bo = 0.08, and green represents E - j /(enasTus/ta) = 0.01.

sion. Fig. 1 (a) demonstrates the plume ablation, where
the magnetic field is generated via ——Vne x VT, due to
the resulting density and temperature proﬁles as demon-
strated in Ref. [32]. By ¢t = 11.2¢4, seen in Fig. 1 (b), the
torodial fields have collided and begun to reconnect. In
Fig. 1 (c), at t = 14.6t4, we observe field energy conver-
sion in the reconnection current sheet between the inflow
fields (E - j > 0.01ngTup/tq), and the development of
closed-flux-surface, plasmoid-like structures in the out-
flow. The associated inflow plane profiles at ¢t = 14.6t4
of ne, 1., J,, and inflow field B, are shown in Fig. 2
(a-d). From Fig. 2 (c,d), we find the upstream field at
the edge of the current sheet is compressed to 0.17 By, a
factor of 1.5-2x the nominal generated field of ~ 0.1 By.
This observation is in contrast to 2-D HED driven recon-
nection simulations, which find pile-up ratios of 4x the
nominal inflow field [16]. In physical units, the observed
compressed field corresponds to 220 T, comparable to the
370 T estimated in the experiment [7].

Fig. 2 (e) presents the downstream magnetic field in
the outflow (YZ plane, z = 0d;o) at t = 14.6 t4. For z
= 25-70 d;p, moving in the +y direction from the cur-
rent sheet center at y = 0 d;9, we find B, reverses its
sign twice, around y = 25 d;p and y = 45 d;9, where
the first reversal corresponds to the center of the upper
plasmoid in Fig. 1 (¢). Comparing Fig. 1 (c) and (d), we
find that the current sheet elongates as the plasmoids are
ejected. Each plasmoid travels ~ 20 d;o in 12 ¢4, yielding
an outflow speed of 1.66 Cs ~ 500 km/s, in agreement
with the experiment, which observed plasmoids ejected
in the outflow at 400 £ 50 km/s [6]. Discussed below, the
creation and ejection of plasmoids appears to modulate
the reconnection, particularly via the traceless pressure
tensor. Biermann-mediated reconnection appears to be
independent of plasmoid behavior.

Biermann-mediated Reconnection: The profiles shown
in Fig. 1 (b) and Fig. 2 (a-d) demonstrate how Biermann-
mediated reconnection operates. The current sheet
(around = & 0d,0, 2z = 20d;), is relatively heated com-

pared to both the inflow and outflow, as shown in Fig. 1
and 2 (b). This local T, maximum flips the direction of
VT, to point towards the plume collision center through-
out the current sheet. Given Vn remains directed toward
the high-density target, ——Vne x VT, in the current
sheet destroys incoming ﬂux (XZ plane) and generates
reconnected flux in the outflow (YZ plane).

In Fig. 3, we quantify the reconnection contribution of
both the Biermann and traceless pressure tensor mecha-
nisms. In 3-D reconnection, the out-of-plane electric field
FE. can have an electrostatic contribution in the current
sheet which does not contribute to B-field evolution (i.e.
reconnection.) Therefore, we extract the electromagnetic
(EM) contribution of each term in Eq. 1 by solving for the
divergence-less component of each RHS term via Fourier
analysis. In Fig. 3 (a,b), the electromagnetic contribu-
tions to E ¢m of the two mechanisms along the inflow
(XZ) plane are presented, demonstrating (Vpe/ene)em
contributes significantly to the reconnection E-field in
the current sheet (black dotted line) around z ~ 16 d;o,
while (V - II./en.)em operates throughout the vertical
current sheet. Fig. 3 (c¢) presents the full generalized
Ohm’s law for E, at z = 16 d;0, showing strong ion in-
flow (green), Hall inflow (cyan), dissipation at = 0d;o
in the current sheet due to both Vpe/en. (black) and
V -1I./en. (magenta), and agreement between E, and
the sum of the RHS of Eq. 1 (blue and red, respectively.)
Fig. 3 (d) clarifies the dissipation terms, presenting both
the full and EM contributions to Eq. 1. Comparing
Vpe/ene (black) vs. (Vpe/ene)sem (brown), we find the
scalar pressure term has both significant electromagnetic
and electrostatic components in the current sheet with
(Vpe/ene)s.em = 0.03 BoCs. For the traceless pressure
tensor term, we find V - Il /ene = (V - Il./ene); em =
0.055 ByCs. We define the local Alfvenic reconnection
rate normalization as By ,V} . where the maximum up-
stream field B}, = 0.17 By and the Alfven velocity Vi =
B;p/ toM;n? = 0.85 C,, where n} = 0.04 ngy, is the cur-
rent sheet ion density at z = 16 d;o. Noting B, Vi . =
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FIG. 2. (a - d) 2-D slices along the inflow plane (XZ plane, y = 0d,o) of ne, Te, J:, and B, at the SG-II scale at time
t = 14.6 t4, where the bottom corners correspond to the center of the expanding plume and the dotted black line indicates the
current sheet. (e) 2-D slice along the outflow plane (Y Z plane, = 0d;0) showing the downstream field B,.

0.145 ByCy, we find the reconnection rate due to Bier-
mann, Rpiermann = (Vpe/ene)z@m/B;pVZ,up ~ 0.2 and
Riracetess = (V- Ie/enc) s em/BypVi 4 ~ 0.38. The lo-
cal reconnection rate is the sum of these rates, yielding
R =~ 0.58, which is the maximum rate observed in the
simulation.

Fig. 3 (e,f) shows the outflow (YZ plane) B-field gen-
eration (ag’”) due to —n%eVne x VT, Biermann, and
-V x (V -1I./en.), the traceless pressure tensor, where
the latter appears to be associated with plasmoid for-
mation from z = 25-80 d;p. Fig. 3 (g,f) quantifies the
full picture: the rate of total flux reconnection, calcu-
lated by (Vpe/ene)em and (V - Il /ene)em vertically in-
tegrated along the current sheet (brown, purple respec-
tively) vs. time, as well as the downstream flux genera-
tion rate by Biermann, as in Fig. 3 (e), and the trace-
less pressure tensor, as in Fig. 3 (f), integrated over the
outflow (respectively shown in black and magenta.) For
the traceless pressure tensor, the reconnected flux (pur-
ple) matches the flux creation downstream (magenta) at
both scales, and we find global reconnection to speed up
around t = 14 ¢4, corresponding to the plasmoid creation.
Subsequently (t = 17 —30t,4), reconnection progressively
slows as the plasmoids are ejected and the current sheet
lengthens. For the Biermann term, we find reconnec-
tion (brown) does not match downstream flux genera-
tion (black), indicating that some downstream flux gen-
eration by the Biermann effect occurs separately from
the reconnection. Biermann reconnection does not slow
with current sheet elongation and ultimately constitutes
~ 25% of the total reconnection, whereas the Biermann
term generates roughly 50% of the downstream flux.

Biermann Reconnection Rate: To evaluate when the
Biermann battery effect should be considered in a re-
connection scenario, we compare estimates of Rpiermann
against the typical fast reconnection value of 0.1 B,,Va
[34]. The Biermann mechanism requires a heated recon-
nection layer 7, with an associated inflow scale length
L7, coupled with a significant out-of-plane n. variation
with scale length L,,. Considering 7$Vne x VT, op-
erating over a reconnection layer width of §,.., the rate
of flux destruction in the reconnection layer, normalized

to By, Vi, can be approximated as:

67‘6CT€ o & 67‘6C di,rec
eLrL,B;,Vi 2 LrL,

RBiermann ~ ’ (2)

where in the second equality we have substituted [,
*2

neTe/%, and d; yec as the local ion inertial length,
demonstrating Rpjermann Scales with reconnection layer
Be. In our simulations for ¢ = 14t4, z = 16d;, given
Te,rec ~ Tab7 ﬁe ~ 28, LT ~ 10 di07 6rec ~ di,rec = 5diOa
L, ~ 14d;9, we find Rpicrmann =~ 0.25, in agreement
with results above.

From Ref. [27], we use Rp;ermann t0 evaluate the possi-
bility of Biermann-mediated reconnection within the tur-
bulent magnetosheath. Referring to the current sheet
parameters presented therein, we find B;, =~ 20 nT,
Va =200 km/s, T¢ yee = 100 €V, Ly =~ 180 km, d,cc = 90
km, and we estimate L,, = 240 km given associated den-
sity measurements. These estimates yield Rpiermann ~
0.05, comparable to the observed normalized reconnec-
tion rate of 0.1, demonstrating that Biermann reconnec-
tion may play a significant role in this system [27].

The simulations presented in this Letter go beyond pre-
vious studies by capturing the full end-to-end 3-D evo-
lution, from self-consistent field generation to reconnec-
tion, of a recent MHD-scale HED reconnection experi-
ment. We find general agreement in B-field generation
and plasmoid dynamics between simulation and exper-
iment, and detailed analysis of our results reveals that
Biermann-battery effect plays a direct role in the 3-D fast
magnetic reconnection. In addition to in HED regimes,
we show using the dimensionless parameter Rpicrmann
that Biermann-mediated reconnection may play a role in
turbulent 3-D reconnection within the magnetosheath,
which may be observed by the Magnetospheric Multi-
scale mission. We further propose that this effect could
be important in heliosheath and in mediating the initial
fast reconnection necessary for large-scale dynamo.

Simulations were conducted on the Titan supercom-
puter at the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, supported by the
Office of Science of the DOE under Contract No. DE-
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