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Although topological mechanical metamaterials have been extensively studied from a theoretical
perspective, their experimental characterization has been lagging. To address this shortcoming,
we present a systematic laser-assisted experimental characterization of topological kagome lattices,
aimed at elucidating their in-plane phononic and topological characteristics. We specifically explore
the continuum elasticity limit, which is established when the ideal hinges that appear in the theo-
retical models are replaced by ligaments capable of supporting bending deformation, as observed for
instance in realistic physical lattices. We reveal how the zero-energy floppy edge modes predicted
for ideal configurations morph into finite-frequency phonon modes that localize at the edges. By
probing the lattices with carefully designed excitation signals, we are able to extract and character-
ize all the features of a complex low-frequency acoustic regime in which bulk modes and topological
edge modes overlap and entangle in response. The experiments provide unequivocal evidence of the
existence of strong asymmetric wave transport regimes at finite frequencies.

Acousto-elastic metamaterials and phononic crystals
are artificially architected materials endowed with the ca-
pability to manipulate mechanical waves. This attribute
makes them attractive for a variety of emerging techno-
logical applications such as acoustic cloaking [1, 2], sound
manipulation and control [3], smart sensing [4], imaging
[5], and thermal management [6]. An important dynam-
ical property of periodic metamaterials is their inherent
directionality, which manifests as a frequency-selective
spatial anisotropy of their bulk wave modes. The direc-
tionality patterns are dictated by the symmetry of the
unit cell. By relaxing the cell symmetry, e.g. through ac-
tively reconfigurable microstructural elements, it is pos-
sible to alter the global directivity of the medium [7, 8].

Recent years have seen the advent of topological me-
chanical metamaterials, which have introduced a new
paradigm for wave manipulation enabled by topologically
protected wave modes. The concept originally emerged in
the realm of quantum physics [9–12]. For example, time-
reversal invariant topological insulators are electronic
materials that, in addition to their bulk bandgap be-
havior, possess topologically protected conducting edge
states that are insensitive to defects [11, 12]. Interest-
ingly, these edge properties, which are only appreciated
in finite domains, are controlled by topological invariants
of the unit cell. Inspired by these intriguing properties,
significant endeavors have been made to achieve mechan-
ical analogues of these phenomena in the form of static
[13–18] and dynamical [19–29] phonon edge modes. A
special class of topological phenomena occurs in Maxwell
lattices, i.e., frame structures featuring ideal hinges that
allow free rotations of the struts [30]. In Maxwell lattices,
the number of constraints equals that of the degrees of
freedom in the unit cell [31]. The presence of free rota-
tional mechanisms allows for lattice distortions that do
not stretch the struts. This type of mechanism is referred

to as a zero-frequency (energy) mode [32]. An example of
a Maxwell lattice is the regular kagome lattice (unit cell
shown in Fig. 1(a)). While an infinite lattice can be seen
as perfectly constrained everywhere, a finite domain with
a free boundary necessarily presents zero modes, whose
number is proportional to the size of the boundary. De-
pending on the unit cell, these zero modes can manifest
as plane-wave-like features in the bulk or localize at the
boundaries as so-called floppy edge modes [33].

While the behavior of ideal topological lattices has
been extensively studied theoretically using ball and
spring models (and with a focus on the static response),
experimental proofs of concept carried out on physical
specimens (realized via fabrication techniques such as
cutting, molding, or printing) have been rare [18, 34].
In this letter, we attempt to bridge this gap in the liter-
ature through a suite of experiments conducted on phys-
ical topological specimens. The ligaments are beam-like
structural elements that can deform both axially and flex-
urally (in the plane of the lattice), with flexural compli-
ance significantly larger than the axial one. These lo-
cal deformation modes at the ligament level dictate the
characteristics of the propagating (shear and longitudi-
nal) wave modes observed at the global lattice scale. We
refer to these conditions as the continuum elasticity limit,
to emphasize that the mechanical behavior of the hinges
depends on the geometric properties of the ligaments and
can be described by continuum elasticity models. Adding
bending stiffness lifts the zero-frequency modes to finite
frequencies, resulting in a complex acoustic regime where
bulk and edge phonons are superimposed and entangled
in the response. Our experiments essentially attempt
to disentangle the coexisting wave components and in-
terpret them in light of the geometric and topological
descriptors of the lattice. In parallel, we visually recon-
struct the spatial patterns of the edge modes that lo-
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FIG. 1. (a)-(b): Unit cells of (a) regular kagome and (b)
topological kagome lattices modeled as ideal ball-spring sys-
tems with lattice vectors a1 and a2 and polarization vector
RT indicated. (c)-(d): Unit cells of (c) regular kagome and
(d) topological kagome lattices cut from ABS sheets and used
in experiments. (e) Experimental setup showing a 8 × 16
topological lattice with the floppy edge at the top , excitation
applied via shaker at the bottom edge and 3D laser vibrome-
ter scanning heads.

calize at the floppy boundaries and we demonstrate the
existence of strong asymmetric wave transport regimes
at finite frequencies.

Reconstructing the phononic and topological charac-
teristics of kagome lattices requires the capability to ob-
tain in-plane measurements at points on the lattice sur-
faces. To this end, we use a 3D Scanning Laser Doppler
Vibrometer (SLDV, Polytec PSV-400-3D), shown in
Fig. 1(e). The lattice specimens are framed on the two
sides, leaving the top and bottom edges free. The exci-
tation is prescribed as a point force at the mid point of
the bottom edge using an electrodynamic shaker (Bruel
& Kjaer Type 4809, powered by a Bruel & Kjaer Type
2718 amplifier) placed at the bottom of the structure
for in-plane excitation. The specimens are manufactured
via water-jet cutting from a sheet of acrylonitrile buta-
diene styrene (ABS) with the following material param-
eters: Young’s modulus E = 2.14 GPa, Poisson’s ratio
ν = 0.35, density ρ = 1040 kg/m3. The unit cells of
kagome lattice specimens corresponding to the configu-
rations of Fig. 1(a) and (b) are shown in Fig. 1(c) and
(d), respectively. The regular kagome unit cell is com-
posed of two equilateral triangles connected with a lig-

ament. The topological kagome unit cell contains one
equilateral and one isosceles triangles. The side length
of all the equilateral triangles for both lattices, and the
longer side of the isosceles triangle in the topological lat-
tice are all a = 2 cm, while the shorter sides have length
b = 2/

√
3 cm. The twist angle of the topological lattice

is 10◦ counter-clockwise, which makes the smaller an-
gle between the triangles 80◦. a1 and a2 are the lattice
vectors in real space. The ligaments are approximately
2 mm in width. The specimens consist of 8 × 16 arrays
of unit cells. In order to excite the topological config-
uration from both the floppy and the non-floppy edges
(which is necessary to probe the topological characteris-
tics), we rotate the specimen by 180◦ while keeping the
excitation source (shaker) fixed below the specimen.

Our first preliminary task consists of experimentally
reconstructing the bulk wave behavior. Beforehand we
conduct a complete numerical characterization of the two
unit cells of Fig. 1(c) and (d) using finite element anal-
ysis (FEA) and Bloch boundary conditions. The iso-
frequency contours of the first phase-constant surface of
the dispersion relation are presented in Fig. 2(a) and
(b). For completeness, the band diagram for the reg-
ular kagome structure is also plotted in Fig. 2(g). Let
us recall that band diagrams of ideal kagome lattices fea-
ture zero-energy modes involving displacements of lattice
sites that occur without any deformation of the lattice
[32]. Here, in contrast, as the physical hinges prevent
the triangular plates from rotating freely with respect to
one another, we do not observe any zero-energy mode
(except for the two translational invariants), leaving the
phonon spectrum fully gapped except at q = 0, where
q is the wave vector in reciprocal space. Interestingly,
the effect of finite-thickness hinges is analogous, in terms
of added bending stiffness, to that obtained by adding
next-nearest-neighbor interactions in ideal kagome lat-
tices, discussed in Ref [33] and recalled in Fig. S1 [35].
From a mechanics perspective, the rotation-hindering
mechanisms are different between the two configurations:
next-nearest-neighbor springs introduce additional elas-
tic connections between selected nodes in the structure,
while finite-width hinges only provide bending stiffness.
However, both produce a shift toward finite frequencies
of the isostatic zero-frequency branch in the Γ −M di-
rection and of the first optical branch at the Γ point.
To appreciate the frequency-selective spatial directivity
intrinsic to these lattices, we track the evolution of the
group velocity vector in the wave-vector plane by taking
the gradient of the dispersion surface ω(qx, qy) with re-
spect to the Cartesian components of the wave vector,
i.e., cg = ∇ω(qx, qy) and plotting iso-frequency contours
of the gradient surface. Fig. 2(c) and (d) show the group
velocity contours for the first phonon mode of the regu-
lar and topological kagome lattices, respectively. As ex-
pected, the contour of the regular kagome lattice features
a strict 6-fold symmetry, while the symmetry is broken
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in the topological case to reflect the intrinsic asymmetry
of the unit cell. In essence, the effects of cell symmetry
relaxation manifest in the spatial directivity landscape.
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FIG. 2. (a)-(b): Iso-frequency contours (first phase-constant
surface in the first Brillouin zone) of realistic (a) regular and
(b) topological kagome lattices calculated from FEA. (c)-(d):
Group velocity iso-frequency contours (frequency increasing
from dark red to bright yellow) highlighting symmetric or
asymmetric directivity of (c) regular and (d) topological lat-
tices. (e)-(f): Snapshots of experimentally acquired wave-
fields in (e) regular and (f) topological lattices, confirming
symmetric/asymmetric propagation. Color denotes magni-
tude of scan point velocities, normalized by the largest value
at the considered instants. (g) Band diagram for regular
kagome lattice. (h) Mode shape calculated at the highlighted
point at ∼ 3300 Hz. (i) Detailed local scan focused on cells
along the propagation path of the regular kagome lattice ex-
cited at ∼ 3300 Hz. Dots and circles represent original and
displaced positions of the scan points, respectively. The area
inside the ellipse falls along the Γ − M direction in real space.

We proceed now to conduct experiments on the finite
lattice specimens described above using the setup shown
in Fig. 1(e). The laser scans performed for this task are
fairly parsimonious, involving one measurement point per
triangle. By exciting regular and topological kagome lat-
tices with tone bursts with carrier frequencies falling in
the acoustic bulk modes range, we recover the symmetric
and asymmetric wave-fields shown in Fig. 2(e) and (f),
respectively. Both display wave beaming along the lat-
tice vectors but markedly different degrees of symmetry,
in conformance with the corresponding group velocity
contours of Fig. 2(c) and (d), respectively. The exper-
imental data also matches the results of full-scale FEA
simulations of finite lattices with identical size and char-
acteristics, which are reported in Fig. S2 [35]. By excit-
ing the lattice with a broad-band chirp excitation, we can
holistically reconstruct the entire phonon band diagram
(in the frequency interval of the chirp), as shown in Fig.

S3 [35]. Dedicated narrow band chirps spanning smaller
frequency intervals can also be used to reconstruct partial
sectors of the band diagram with higher fidelity. Finally,
by performing local fine-scale scans, we can zoom in on
selected details of the lattice cells to capture the local-
ized deformation mechanisms of the hinges. For example,
for a burst at ∼ 3300 Hz (which excites the plateau re-
gion of the first branch along the Γ −M direction), in
Fig. 2(i) we plot the displacements of the scan points in-
side a few cells located along the corresponding direction
in real space. Indeed, the deformation field presents a
combination of transversal and rotational motion, consis-
tent with the mode shape computed via unit cell analysis
for the same conditions and shown in Fig. 2(h).

While the bulk wave characteristics are fully captured
via Bloch analysis, the topological edge modes, which
manifest on the scale of finite lattices, require additional
modeling tools. In the context of ideal models, the topo-
logical properties are often described by introducing the
topological polarization vector RT , calculated as [13]:

RT = −
∑
i=1

niai, (1)

where ni are winding numbers obtained from

ni =
1

2πi

∮
Ci

dq · ∇q ln [det(C(q)], (2)

where Ci is a cycle along the contour of the Brillouin
zone connecting q and q + bi, where bi is a primitive
reciprocal vector (such that ai · bj = 2πδij). C(q) is
the compatibility matrix of the ideal lattice describing
the displacement-strain relation in Fourier space. The
topological polarization vector reveals the existence of
floppy edge modes, and identifies the specific edge(s)
where floppy motion is exponentially localized. From
Eq. (1), we can see that for the topological cell, RT = a1
and therefore points to the top boundary, thus qualify-
ing it as a floppy edge. Although in this study the lattice
connections are realistic ligaments, leading to restrictions
on the possible in-plane bending between the plates, we
conjecture that the existence of edge modes with floppy
characteristics is preserved. The open question is how
these modes would manifest in the dynamic response. In
essence, we borrow the terminology “floppy modes” from
the ideal lattice case and we broaden its significance to
describe the more general localization of phonon modes
that may occur at low (but finite) frequencies in their
realistic counterparts.

Computationally, the fate of the floppy edge modes can
be predicted through a supercell analysis. To this end, we
consider the finite strip of 6 cells shown in Fig. 3(a), and
we apply 1D Bloch conditions along vector a, while leav-
ing the top and bottom edges free to mimic an infinitely
long topological strip. As can be seen from the band
diagram calculated using FEA and shown in Fig. 3 (b),
we recognize the emergence of two new branches, both
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FIG. 3. (a) Supercell of topological kagome lattice compris-
ing six unit cells. The left and right boundaries are free.
Bloch conditions are applied along lattice vector a. (b) Low-
est branches of the band diagram for the supercell (magenta)
superimposed to bulk modes calculated via unit cell analy-
sis (black). (i)-(vi) Mode shapes of the supercell for differ-
ent wave vectors sampled along the lowest floppy edge mode
(blue circles). The color is commensurate to nodal displace-
ment. The supercells are rotated by 45◦ counter-clockwise
comparing to the unit cell in Fig. 1 (d).

confined in frequency intervals lower than the dispersive
region of the lowest bulk modes. The mode shapes shown
in Fig. 3(i)-(vi), calculated along the lowest branch, fea-
ture indeed deformation localized at one end. This result
qualifies these branches as edge modes and characterizes
the left edge as the “floppy” boundary, consistent with
the polarization vector predictions. These new modes
represent the evolution of the floppy modes of ideal topo-
logical lattices in the limit of continuum elasticity. The
fact that a topological lattice features two edge modes
with distinct in-plane mechanisms constitutes an inter-
esting departure from the conventional case of Rayleigh
waves arising at the boundary of a 2D half-space, which
feature a single mode of deformation [36].

To prove experimentally the existence of these local-
ized modes, we resort to full scans of the specimen. When
we excite at sufficiently low frequencies falling in the
range of the edge modes (the two lowest magenta lines in
Fig. 3(b)), we capture the emergence of spatial behaviors
that are germane to the topological configuration and
that differ drastically according to which edge is excited
(Fig. 4). Specifically, by exciting from the non-floppy
edge, we mostly observe waves that propagate fast in the
bulk with very long wavelength. In contrast, by excit-
ing the floppy edge, the energy remains localized at the
boundary. These profound differences are reflected in the
spectral plane upon discrete Fourier transform (DFT) of
the data. Indeed, when we excite from the non-floppy
edge, we detect the conventional signature of asymmet-
ric phononic modes (reported for completeness in Fig.
S4 [35]). In contrast, when we excite from the floppy
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FIG. 4. Snapshots of wavefields induced through burst exci-
tations at ∼ 3000 Hz applied at the (a) non-floppy and (b)
floppy edges, respectively. The velocity magnitudes are nor-
malized by the largest value measured in the wavefield.

edge, most of the energy is concentrated in strong spec-
tral features that align perfectly with the branches of the
edge modes calculated via supercell analysis, as shown in
Fig. 5.

In an effort to quantify the asymmetry of wave trans-
port that has emerged from these tests, we calculate the
energy transmissibility, i.e., the ratio between the kinetic
energy localized at the edge opposite to the excitation
and the energy confined at the edge containing the exci-
tation point. In Fig. 6, we plot this quantity as a function
of frequency for two scenarios: one where the excitation
is applied at the non-floppy boundary, and the other for
excitation applied at the floppy boundary. When we ex-
cite from the floppy edge at a frequency of ∼ 3300 Hz,
the transmissibility experiences a dip, which indicates
that the energy is indeed localized at the floppy edge
with modest propagation in the bulk. In contrast, for
the same frequency, the excitation from the non-floppy
edge results in a local maximum of the transmissibility,
since the wave propagates through the bulk and reaches
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FIG. 5. DFT of experimental data for burst excitation at
(a) ∼ 3000 Hz and (b) ∼ 5500 Hz applied at the floppy edge,
matching the floppy branches from supercell analysis.
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Excited from the floppy side

Excited from the non-floppy side

FIG. 6. Energy transmissibility as a function of frequency.
The blue circles and red triangles correspond to excitations
applied at the non-floppy and floppy edges, respectively.

the opposite (floppy) edge, where it is eventually trapped
by floppy mechanisms. However, when we excite above
the edge mode frequency cut-off, the two curves coalesce
and we enter a conventional bulk wave regime.

In conclusion, we have experimentally demonstrated
that by working in the limit of continuum elasticity, the
phononic characteristics of topological kagome lattices
are enriched by new edge modes at finite frequencies
which can localize energy at the floppy boundary. This
results in strong asymmetric wave transport capabilities
in the very low-frequency acoustic regime. Our results
help export a rich body of knowledge developed for static
lattices to the dynamic regime, and provide innovative
protocols for the dynamic experimental characterization
of architected and lattice materials at large.
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[19] R. Süsstrunk and S. D. Huber, Science 349, 47 (2015).
[20] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M.

Turner, and W. T. Irvine, Proceedings of the National
Academy of Sciences 112, 14495 (2015).

[21] P. Wang, L. Lu, and K. Bertoldi, Physical review letters
115, 104302 (2015).

[22] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Nature
communications 6, 8682 (2015).

[23] T. Kariyado and Y. Hatsugai, Scientific reports 5, 18107
(2015).

[24] Y.-T. Wang, P.-G. Luan, and S. Zhang, New Journal of
Physics 17, 073031 (2015).

[25] R. K. Pal, M. Schaeffer, and M. Ruzzene, Journal of
Applied Physics 119, 084305 (2016).

[26] C. Brendel, V. Peano, O. J. Painter, and F. Marquardt,
Proceedings of the National Academy of Sciences 114,
E3390 (2017).

[27] R. Chaunsali, E. Kim, A. Thakkar, P. G. Kevrekidis, and
J. Yang, Physical review letters 119, 024301 (2017).

[28] R. Chaunsali, C.-W. Chen, and J. Yang, Physical Review
B 97, 054307 (2018).

[29] E. Prodan, K. Dobiszewski, A. Kanwal, J. Palmieri, and
C. Prodan, Nature communications 8, 14587 (2017).

[30] J. C. Maxwell, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 27, 294
(1864).

[31] T. Lubensky, C. Kane, X. Mao, A. Souslov, and K. Sun,
Reports on Progress in Physics 78, 073901 (2015).

[32] X. Mao and T. C. Lubensky, Annual Review of Con-
densed Matter Physics (2018).

[33] K. Sun, A. Souslov, X. Mao, and T. Lubensky, Pro-
ceedings of the National Academy of Sciences 109, 12369
(2012).

[34] J. Paulose, A. S. Meeussen, and V. Vitelli, Proceedings
of the National Academy of Sciences 112, 7639 (2015).

[35] See Supplemental Material at [URL will be inserted by
publisher] for more figures and descriptions.



6

[36] L. Rayleigh, Proceedings of the London Mathematical
Society 1, 4 (1885).


