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We use gravitational-wave observations of the binary neutron star merger GW170817 to explore the
tidal deformabilities and radii of neutron stars. We perform Bayesian parameter estimation with the source
location and distance informed by electromagnetic observations. We also assume that the two stars have
the same equation of state; we demonstrate that for stars with masses comparable to the component masses
of GW170817, this is effectively implemented by assuming that the stars’ dimensionless tidal deforma-
bilities are determined by the binary’s mass ratio q by Λ1/Λ2 = q6. We investigate different choices of
prior on the component masses of the neutron stars. We find that the tidal deformability and 90% credible
interval is Λ̃ = 222+420

−138 for a uniform component mass prior, Λ̃ = 245+453
−151 for a component mass prior

informed by radio observations of Galactic double neutron stars, and Λ̃ = 233+448
−144 for a component mass

prior informed by radio pulsars. We find a robust measurement of the common areal radius of the neutron
stars across all mass priors of 8.9 ≤ R̂ ≤ 13.2 km, with a mean value of 〈R̂〉 = 10.8 km. Our results are
the first measurement of tidal deformability with a physical constraint on the star’s equation of state and
place the first lower bounds on the deformability and areal radii of neutron stars using gravitational waves.

PACS numbers: 95.85.Sz, 26.60.Kp, 97.80.-d

Introduction—On August 17, 2017 LIGO and Virgo ob-
served gravitational waves from a binary neutron star co-
alescence, GW170817 [1]. This observation can be used
to explore the equation of state (EOS) of matter at super-
nuclear densities [2, 3]. This information is encoded as a
change in gravitational-wave phase evolution caused by the
tidal deformation of the neutron stars [4]. At leading order,
the tidal effects are imprinted in the gravitational-wave sig-
nal through the binary tidal deformability [4, 5]

Λ̃ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (1)

where q = m2/m1 ≤ 1 is the binary’s mass ratio (c.f.
Eq. (34) of Ref. [6]). The deformability of each star is

Λ1,2 =
2

3
k2

(
R1,2c

2

Gm1,2

)5

, (2)

where k2 is the tidal Love number [4, 5], which depends
on the star’s mass and the EOS.R1,2 andm1,2 are the areal
radii and masses of the neutron stars, respectively.

In the results of Ref. [1], the priors on Λ1,2 are taken
to be completely uncorrelated, which is equivalent to as-
suming that each star may have a different EOS. Here, we
re-analyze the gravitational-wave data using Bayesian in-
ference [7–9] to measure the tidal deformability, using a
correlation between Λ1 and Λ2 which follows from the as-
sumption that both stars have the same EOS. We repeat our
analysis without the common EOS constraint and calculate
the Bayes factor that compares the evidences for these two
models. We also fix the sky position and distance from
electromagnetic observations [10, 11]. We study the effect
of the prior for the component masses by performing anal-
yses with three different priors: the first is uniform between

1 and 2M�, the second is informed by radio observations
of double neutron star binaries, and the third is informed
by the masses of isolated pulsars [12].

The common equation of state constraint—To explore
imposing a common EOS constraint, we employ a piece-
wise polytrope scheme [13] to simulate thousands of
equations of state. Each EOS obeys causality, connects
at low densities to the well-known EOS of neutron star
crusts [14], is constrained by experimental and theoret-
ical studies of the symmetry properties of matter near
the nuclear saturation density, and satisfies the observa-
tional constraint for the maximum mass of a neutron star,
mmax ≥ 2M� [15]. Fig. 1 shows the results of Tolman-
Oppenheimer-Volkoff (TOV) integrations [16, 17] to deter-
mine Λ as functions of m, R, and the EOS. Each config-
uration is color-coded according to its radius. In the rele-
vant mass range, Λ generally varies as m−6. For a given
mass m, there is an inherent spread of about a factor ten
in Λ, which is correlated with R6. We find that the star’s
tidal deformability is related to its compactness parame-
ter β = Gm/(Rc2) by the relation Λ ' aβ−6. We
find that a = 0.0093 ± 0.0007 bounds this relation if
1.1M� ≤ m ≤ 1.6M� (note that this is a bound, not
a confidence interval). The additional power of β−1 in the
Λ−β relation, relative to β−5 in Eq. (2), originates because
the dimensionless tidal Love number, k2, varies roughly as
β−1 for masses ≥ 1M�, although this is not the case for
all masses [17]. For m→ 0 we see that k2 → 0 so that k2
is proportional to β with a positive power, but since neu-
tron stars with m < 1M� are physically unrealistic, that
domain is not pertinent in our study.

We observed that, for nearly every specific EOS, the
range of stellar radii in the mass range of interest for
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FIG. 1. The tidal deformability Λ as a function of mass for phys-
ically realistic polytropes. A TOV integration with each EOS pa-
rameter set results in a series of values of Λ(m) that are shown as
points colored by their radii R. Dashed curves are lower bounds
to Λ for a given mass m which vary depending on the assumed
lower limit to the neutron star maximum mass, mmax. All values
of mmax produce the same upper bound.

GW170817 is typically small. As long as mmax ≥ 2M�,
the piecewise polytrope study reveals 〈∆R〉 = −0.070 km
and

√
〈(∆R)2〉 = 0.11 km, where ∆R ≡ R1.6 − R1.1

with R1.1,1.6 the radii of stars with m = 1.1M� and
m = 1.6M�, respectively. Therefore, for masses rele-
vant for GW170817, each EOS assigns a common value
of R̂ to stellar radii with little sensitivity to the mass. We
can combine the relations Λ ' aβ−6 and R1 = R2 to
find the simple prescription Λ1 = q6Λ2. We impose the
common EOS constraint in our analysis using this relation.
The exponent of q changes with chirp mass M and for
M > 1.5M� this relation has to be modified. However,
this is not relevant for the study of GW170817.

Implications for the neutron star radius—The common
EOS constraint allows us to show that the binary tidal de-
formability Λ̃ is essentially a function of the chirp mass
M, the common radius R̂, and the mass ratio q, but that its
dependence on q is very weak. Substituting the expressions
Λ ' aβ−6 and R = R̂ into Eq. (1), we find

Λ̃ =
16a

13

(
R̂c2

GM

)6

f(q). (3)

where f(q) is very weakly dependent on q:
f(q) = q8/5(12− 11q + 12q2)(1 + q)−26/5. (4)

For example, if we compare a binary with q = 0.75 to an
equal mass binary, we find f(0.75)/f(1) = 1.021. As
long as q ≥ 0.6, valid for 1M� ≤ m ≤ 1.6M� for both
stars, we infer from Eq. (3),

Λ̃ = a′
(
R̂c2

GM

)6

, (5)

where a′ = 0.0042 ± 0.0004. The supplemental mate-
rial [56] shows TOV integrations for a range of EOS that
validate this relationship. For stars with masses compa-
rable to GW170817, the common radius R̂ can be found
from the inversion of Eq. (5),

R̂ ' R1.4 ' (11.2± 0.2)
M
M�

(
Λ̃

800

)1/6

km. (6)

The quoted errors originate from the uncertainties in a and
q, and amount in total to 2%.

Parameter Estimation Methods— We use Bayesian in-
ference to measure the parameters of GW170817 [18].
We calculate the posterior probability density func-
tion, p(~θ|~d(t), H), for the set of parameters ~θ for the
gravitational-waveform model, H , given the LIGO Han-
ford, LIGO Livingston, and Virgo data ~d(t) [19, 20]

p(~θ|~d(t), H) =
p(~θ|H)p(~d(t)|~θ,H)

p(~d(t)|H)
. (7)

The prior, p(~θ|H), is the set of assumed probability dis-
tributions for the waveform parameters. The likelihood
p(~d(t)|~θ,H) assumes a Gaussian model for the detector
noise [21]. Marginalization of the likelihood to obtain the
posterior probabilities is performed using Markov Chain
Monte Carlo (MCMC) techniques using the PyCBC In-
ference software [7, 8] and the parallel-tempered emcee
sampler [9, 22, 23]. We fix the sky location and distance
to GW170817 [10, 11] and calculate the posterior prob-
abilities for the remaining source parameters. Following
Ref. [1], the waveform model H is the restricted TaylorF2
post-Newtonian aligned-spin model [24–29]. Technical de-
tails of our parameter estimation and a comparison to Fig. 5
of Ref [1] are provided as supplemental material [56].

To implement the common EOS constraint we construct
the priors on Λ1,2 according to

Λ1 = q3Λs, Λ2 = q−3Λs, (8)

where Λs ∼ U [0, 5000]. We discard draws with Λ̃ >
5000, since these values are beyond the range of all plau-
sible EOS. The resulting prior on Λ̃ is uniform between 0
and 5000. We also perform analyses that do not assume
the common EOS constraint where we allow completely
uncorrelated priors for Λ1,2. This allows us to compare
the evidences between these hypotheses. For the uncor-
related Λ1,2 analyses, the prior for Λ1 ∼ U [0, 1000] and
Λ2 ∼ U [0, 5000] with these intervals set by the range of
plausible equations of state in the mass range of interest,
our convention of m1 ≥ m2, and discarding draws with
Λ̃ > 5000.

The choice of mass prior can have an impact on the re-
covery of the tidal deformability [30]. To investigate this,
we carry out our parameter estimation analyses using three
different priors on the binary’s component masses. We first
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FIG. 2. Posterior probability densities for Λ1,2 with the common EOS constraint using Uniform (left), Double Neutron Stars (middle),
and Galactic Neutron Stars (right) component mass priors. The 50% and 90% credible region contours are shown as solid curves.
Overlaid are contours of Λ̃ (in magenta) and q (in gray). The values of Λ1 and Λ2 forbidden by causality have been excluded from the
posteriors.

assume a uniform prior on each star’s mass, with m1,2 ∼
U [1, 2]M�. We then assume a Gaussian prior on the com-
ponent masses m1,2 ∼ N(µ = 1.33, σ = 0.09)M�,
which is a fit to masses of neutron stars observed in dou-
ble neutron star systems [12]. The third prior assumes
that the component masses are drawn from a fit to the ob-
served mass distributions of recycled and slow pulsars in
the Galaxy with m1 ∼ N(µ = 1.54, σ = 0.23)M�
and m2 ∼ N(µ = 1.49, σ = 0.19)M� [12]. We im-
pose the constraint m1 ≥ m2 which leads to Λ2 ≥ Λ1.
For all our analyses, the prior on the component spins is
χ1,2 ∼ U [−0.05, 0.05], consistent with the expected spins
of field binaries when they enter the LIGO-Virgo sensitive
band [31].

Results—We perform parameter estimation for each
mass prior with and without the common EOS constraint
and calculate the Bayes factor—the ratio of the evidences
p(~d(t)|H)—between the common EOS constrained and
unconstrained analyses. We find Bayes factors B of 369,
125, and 612 for the three mass priors, respectively, indi-
cating that the data strongly favors the common EOS con-
straint in all cases. The full posterior probability densi-
ties of the parameters p(~θ|~d(t), H) for the common EOS
runs are shown in the supplemental material [56] and are
available for download at Ref. [32]. Fig. 2 shows the pos-
terior probability densities for Λ1 and Λ2 with 90% and
50% credible region contours. Overlaid are q contours
and Λ̃ contours obtained from Eq. (1), Λ ' aβ−6, and
R1 ' R2 ' R̂ as

Λ1(Λ̃, q) =
13

16
Λ̃

q2(1 + q)4

12q2 − 11q + 12
, Λ2(Λ̃, q) = q−6Λ1

(9)
Due to our constraint Λ2 ≥ Λ1, our credible contours are
confined to the region where q ≤ 1. One can easily demon-
strate that Λ2 ≥ Λ1 is valid unless (c2/G)dR/dm > 1,
which is impossible for realistic equations of state. For

the entire set of piecewise polytropes satisfying mmax >
2M� we considered, (c2/G)dR/dm never exceeded 0.26.
Even if a first order phase transition appeared in stars with
masses between m2 and m1, it would be necessarily true
that dR/dm < 0 across the transition. Due to the q de-
pendence of Λ1, Λ2, the credible region enclosed by the
contours broadens from the double neutron star (most re-
stricted), to the pulsar, to the uniform mass (least restricted)
priors. However, the upper bound of the credible region is
robust.

We find Λ̃ = 205+415
−167 for the uniform component mass

prior, Λ̃ = 234+452
−180 for the prior informed by double neu-

tron star binaries in the Galaxy, and Λ̃ = 218+445
−173 for the

prior informed by all Galactic neutron star masses (errors
represent 90% credible intervals). Our measurement of Λ̃
appears to be robust to the choice of component mass prior,
within the (relatively large) statistical errors on its measure-
ment. The Bayes factors comparing the evidence from the
three mass priors are of order unity, so we cannot claim any
preference between the mass priors.

The 90% credible intervals on Λ̃ obtained from the
gravitational-wave observations include regions forbidden
by causality. Applying a constraint to our posteriors for the
causal lower limit of Λ as a function of m [55], we ob-
tain Λ̃ = 222+420

−138 for the uniform component mass prior,
Λ̃ = 245+453

−151 for the prior informed by double neutron
star binaries in the Galaxy, and Λ̃ = 233+448

−144 for the prior
informed by all Galactic neutron star masses (errors rep-
resent 90% credible intervals). Using Eq. 6, we map our
M posteriors and Λ̃ posteriors (with the causal lower limit
applied) to R̂ ' R1.4 posteriors, allowing us to estimate
the common radius of the neutron stars for GW170817 for
each mass prior. Fig. 3 shows the posterior probability dis-
tribution for the binary tidal deformation Λ̃ and the com-
mon radius R̂ of the neutron stars in the binary. Our results
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FIG. 3. The 90% credible region of the posterior probability for
the common radius R̂ and binary tidal deformability Λ̃ with the
common EOS constraint for the three mass priors. The posteriors
for the individual parameters are shown with dotted lines at the
5%, 50% and 95% percentiles. The values of Λ̃, and hence R̂
forbidden by causality have been excluded from the posteriors.

suggest a radius R̂ = 10.7+2.1
−1.6 ± 0.2 km (90% credible

interval, statistical and systematic errors) for the uniform
mass prior, R̂ = 10.9+2.1

−1.6±0.2 km for double neutron star
mass prior, and R̂ = 10.8+2.1

−1.6±0.2 km for the prior based
on all neutron star masses.

For the uniform mass prior, we computed the Bayes fac-
tor comparing a model with a prior Λs ∼ U [0, 5000] to a
model with a prior Λs ∼ U [0, 100]. We find log10(B) ∼
1, suggesting that the data favors a model that includes
measurement of tidal deformability Λ̃ & 100. However,
the evidences were calculated using thermodynamic inte-
gration of the MCMC chains [9]. We will investigate model
selection using e.g. nested sampling [33] in a future work.

Finally, we note the post-Newtonian waveform family
used will result in systematic errors in our measurement of
the tidal deformability [34, 35]. However, this waveform
family allows a direct comparison to the results of Ref. [1].
Accurate modeling of the waveform is challenging, as the
errors in numerical simulations are comparable to the size
of the matter effects that we are trying to measure [36].
Waveform systematics and comparison of other waveform
models (e.g. [37]) will be investigated in a future work.

Discussion—Using Bayesian parameter estimation we
have measured the tidal deformability and common radius
of the neutron stars in GW170817. Table I summarizes our
findings. To compare to Ref. [1], which reports a 90% up-
per limit on Λ̃ ≤ 800 under the assumption of a uniform
prior on Λ̃, we integrate the posterior for Λ̃ to obtain 90%
upper limits on Λ̃. For the common EOS analyses these are
485, 521, and 516 for the uniform, double neutron star, and
Galactic neutron star component mass priors, respectively.

Mass prior Λ̃ R̂ (km) B Λ̃90%

Uniform 222+420
−138 10.7+2.1

−1.6 ± 0.2 369 < 485

Double neutron star 245+453
−151 10.9+2.1

−1.6 ± 0.2 125 < 521

Galactic neutron star 233+448
−144 10.8+2.1

−1.6 ± 0.2 612 < 516

TABLE I. Results from parameter estimation analyses using three
different mass prior choices with the common EOS constraint,
and applying the causal minimum constraint to Λ(m). We show
90% credible intervals for Λ̃, 90% credible intervals and system-
atic errors for R̂, Bayes factors B comparing our common EOS
to the unconstrained results, and the 90% upper limits on Λ̃.

We find that in comparison to the unconstrained analysis,
the common EOS assumption significantly reduces the me-
dian value and 90% confidence upper bound of Λ̃ by about
28% and 19% respectively for all three mass priors. The
difference between our common EOS results for the three
mass priors is consistent with the physics of the gravita-
tional waveform. At constantM, decreasing q causes the
binary to inspiral more quickly [38]. At constantM and
constant q, increasing Λ̃ also causes the binary to inspi-
ral more quickly, so there is a mild degeneracy between q
and Λ̃. The uniform mass prior allows the largest range
of mass ratios, so we can fit the data with a larger q and
smaller Λ̃. The double neutron star mass prior allows the
smallest range of mass ratios and so a larger Λ̃ is required
to fit the data, with the Galactic neutron star mass prior
lying between these two cases.

Nevertheless, considering all analyses we performed
with different mass prior choices, we find a relatively ro-
bust measurement of the common neutron star radius with
a mean value 〈R̂〉 = 10.8 km bounded above by R̂ <

13.2 km and below by R̂ > 8.9 km. Nuclear theory and
experiment currently predict a somewhat smaller range by
2 km, but with approximately the same centroid as our re-
sults [14, 39]. A minimum radius 10.5–11 km is strongly
supported by neutron matter theory [40–42], the unitary
gas [43], and most nuclear experiments [14, 39, 44]. The
only major nuclear experiment that could indicate radii
much larger than 13 km is the PREX neutron skin mea-
surement, but this has published error bars much larger
than previous analyses based on anti-proton data, charge
radii of mirror nuclei, and dipole resonances. Our re-
sults are consistent with photospheric radius expansion
measurements of X-ray binaries which obtain R ≈ 10–
12 km [12, 45, 46]. Ref. [47] found from an analysis of 5
neutron stars in quiescent low-mass X-ray binaries a com-
mon neutron star radius 9.4±1.2 km, but systematic effects
including uncertainties in interstellar absorption and the
neutron stars’ atmospheric compositions are large. Other
analyses have inferred 12 ± 0.7 km [48] and 12.3 ± 1.8
km [49] for the radii of 1.4M� quiescent sources.

We have found that the relation q7.48 < Λ1/Λ2 < q5.76

in fact completely bounds the uncertainty for the range of
M relevant to GW170817, assuming m2 > 1M� [55]
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and that no strong first-order phase transitions occur near
the nuclear saturation density (i.e., the case in which m1

is a hybrid star and m2 is not). Analyses using this pre-
scription instead of the q6 correlation produce insignificant
differences in our results [54]. Since models with the com-
mon EOS assumption are highly favored over those with-
out this assumption, our results support the absence of a
strong first-order phase transition in this mass range.

In this letter, we have shown that for binary neutron star
mergers consistent with observed double neutron star sys-
tems [50], assuming a common EOS implies that Λ1/Λ2 '
q6. We find evidence from GW170817 that favors the
common EOS interpretation compared to uncorrelated de-
formabilities. Although previous studies have suggested
that measurement of the tidal deformability is sensitive to
the choice of mass prior [30], we find that varying the
mass priors does not significantly influence our conclu-
sions suggesting that our results are robust to the choice of
mass prior. Our results support the conclusion that we find
the first evidence for finite size effects using gravitational-
wave observations.

After our letter was submitted, the LIGO/Virgo col-
laborations have placed new constraints on the radii of
the neutron stars using GW170817 [51]. The most di-
rect comparison is between our uniform mass prior result
(R̂ = 10.7+2.1

−1.6 ± 0.2) and the LIGO/Virgo method that
uses equation-of-state-insensitive relations [52, 53] (R1 =
10.8+2.0

−1.7 km and R2 = 10.7+2.1
−1.5 km). This result vali-

dates our approximation R1 = R2 used to motivate the
prescription Λ1 = q6Λ2, and Eqs. 3, 5. Our statistical er-
rors are comparable to the error reported by LIGO/Virgo.
Systematic errors from EOS physics of±0.2 km are added
as conservative bounds to our statistical errors, broaden-
ing our measurement error, whereas Ref. [51] marginalized
over these errors in the analysis. Ref. [51] also investigates
a method of directly measuring the parameters of the EOS
which results in smaller measurement errors. Investigation
of these differences between our analysis and the latter ap-
proach will be pursued in a future paper.

Observations of future binary neutron star mergers will
allow further constraints to be placed on the deformability
and radius, especially if these binaries have chirp masses
similar to GW170817 as radio observations suggest. As
more observations improve our knowledge of the neutron
star mass distribution, more precise mass–deformability
correlations can be used to further constrain the star’s ra-
dius.
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