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Using a semi-analytical approach based on the thin-shell approximation, we calculate the long-
term evolution of supernova remnants (SNRs) while also accounting for the cosmic rays (CRs)
accelerated at their blast waves. Our solution reproduces the results of state-of-the-art hydro simu-
lations across the adiabatic and radiative stages for the gas-only case and predicts that typical CR
acceleration efficiencies (≈ 10% ) can boost SNR momentum deposition by a factor of 2–3.
This enhancement can become as large as an order of magnitude in environments in which
the gas experiences more severe radiative losses. This result may have a crucial impact on modeling
the effect of supernova feedback on star formation and galaxy evolution.

INTRODUCTION

One of the most significant challenges in modeling
galaxy formation and evolution is proper accounting for
the effect on star formation history of feedback from ac-
tive galactic nuclei (for the most massive galaxies), stel-
lar winds, and supernova explosions. Feedback is cru-
cial for quenching star formation and launching galac-
tic winds, which drive baryons out and enrich the in-
tergalactic medium in metals [e.g., 1]. Supernovae inject
both energy and momentum into the interstellar medium
(ISM) but are not resolved in most galaxy simulations,
in which a grid cell typically contains more mass than
a supernova remnant (SNR) and the deposited thermal
energy is quickly radiated away (overcooling). There-
fore, SN feedback is effectively parametrized by sub-grid
models for momentum deposition [e.g., 2–5], which —in
order to produce galaxies consistent with observations—
typically require an extra boost with respect to the mo-
mentum yield calculated with numerical simulations of
single SNRs [6–10]. SN clustering may be able to in-
crease momentum deposition with respect to a linear su-
perposition of single events, but its role still needs to be
quantitatively addressed [e.g., 11].

In this Letter we study the evolution of SNRs including
also the contribution of the non-thermal particles (here-
after, cosmic rays, CRs) that are efficiently produced at
SNR blast waves via diffusive shock acceleration [e.g.,
12, 13]. Kinetic simulations show that shocks can chan-
nel as much as 10–20% of their bulk energy into CRs
[14, 15], consistent with SNR multi-wavelength emission
[e.g., 16, 17]. We show that CRs can significantly affect
the late-time SNR evolution and boost momentum de-
position, thereby providing a physical motivation for the
heuristic boost typically accounted for in galaxy simula-
tions.

The evolution of a typical SNR goes through several
stages. Initially, the SNR undergoes a phase of rapid
expansion (ejecta-dominated stage), in which the iner-
tia of the swept-up ambient medium is much smaller

than the mass of the SN ejecta, Mej. When such inertia
is no longer negligible, the SNR enters the Sedov stage
and expands adiabatically until the post-shock temper-
ature drops below ∼ 106 K, when the thermal gas cools
rapidly due to forbidden atomic transitions. The SNR
keeps expanding because its internal pressure still ex-
ceeds the ambient pressure (Pin > PISM, pressure-driven
snowplow), but simulations show that the deposited mo-
mentum quickly saturates to pdep ∼ 3 × 105M�km s−1,
with M� the solar mass [6–11, 18]. Eventually, when
Pin ≈ PISM, expansion is slow and driven by relic kinetic
energy (momentum-driven snowplow).

The effect of CRs on SNR evolution is twofold: 1) act-
ing as a relativistic fluid, CRs suffer less adiabatic loss
than the thermal gas, so that at late times they domi-
nate the internal pressure; 2) most importantly, the CR
energy is not radiated away during the snowplow phase,
but rather continues to support SNR expansion. The
importance of CRs can be estimated with the follow-
ing simple argument. Denoting the fraction of the SNR
bulk pressure converted to CR pressure at the shock
with ξCR and the initial SN kinetic energy with ESN,
one has PCR ≈ 3ξCRESN/(4πR

3
sh), Rsh being the SNR

shock radius. Momentum deposition may continue until
Pin ≈ PCR ≈ PISM = kBnISMTISM, where nISM and TISM

are the number density and temperature of the ambient
medium, and kB is the Boltzmann constant. Introducing
the ambient density ρISM ≈ µmpnISM, where mp is the
proton mass and µ ≈ 1.4 for 10% helium abundance,
the total momentum deposited is pdep ≈ MfVf , with

Mf ≈ ξCRESNρISM/PISM and Vf ≈
√

5
3kBTISM/(µmp)

of the order of the ambient sound speed. In numbers:

pdep ≈ 9.44× 106 ξCRESN

1051erg

(
TISM

8000K

)− 1
2

M�km s−1. (1)

Physically speaking, in the presence of CRs, the ra-
diative stage becomes similar to an adiabatic stage (with
Rsh ∝ t2/5) with an effective SNR energy of ∼ ξCRESN.
Note that, if the ISM pressure were dominated by super-
sonic turbulence, Vf would instead be comparable with
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the turbulent velocity, typically a few tens of km s−1 and
independent of TISM.

This estimate hinges on the reasonable assump-
tion that CRs remain confined in the SNR. γ-ray
observations suggest that GeV CRs, which carry
most of the pressure, are still present in middle-
age/old SNRs [e.g., 19, 20], even if higher-energy
CRs may have already escaped [e.g., 21, 22]. For
a Bohm diffusion coefficient D = crL/3 [23], with
c the speed of light and rL ≈ 1012 cm the gyro-
radius of GeV CRs in a few µG magnetic field,
the diffusion time on a distance comparable to
the SNR shell thickness, ∆sh ∼ a few pc, is in fact
∆2

sh/D & 107 yr, longer than the SNR lifetime.

METHOD

Both analytical (self-similar) and numerical solutions
suggest that the evolution of a strong blast wave can be
modeled in the so-called thin-shell approximation, i.e.,
by assuming that most of the swept-up mass lies in a
narrow layer, while the inner cavity of the SNR is filled
with hot plasma [24–27]. In this limit, the thin, dense
shell stores the SNR kinetic energy, while the hot bub-
ble contributes the internal pressure. The standard thin-
shell equations use different approximations in the adi-
abatic and radiative stages [e.g., 25, §IIC]; instead, we
put forward a smooth, semi-analytical solution that is
valid from the beginning of the Sedov stage to the end
of the pressure-driven snowplow stage, also including the
pressure in CRs, the role of which has previously been
accounted for during the Sedov stage only [26, 28, §E2].
Ejecta-Dominated Stage— In this stage, the post-shock

shell is still forming, so we use the approximate analytical
solution derived by [29] for a SNR expanding in a uniform
medium, where the SNR radius evolves as

Rsh(t) ≈

[(
0.25Mej

t2ESN

) 3
4

+

(
0.62ρISM

Mej

) 1
2

]− 2
3

, (2)

and the shock velocity reads Vsh(t) = dRsh/dt. This
solution gives a smooth transition to the Sedov stage. It
does not include the CR pressure, since CR acceleration
is expected to ramp up during this time [e.g., 20].

Sedov Stage— When the the swept-up mass becomes
comparable to Mej, one can use the thin-shell approxi-
mation and write momentum conservation as [25]:

d

dt
(MV) = 4πR2

sh(Pth + PCR − PISM), (3)

where M(r) ≡Mej + 4π
3 r

3ρISM is the shell mass at radius
r, M ≡ M(Rsh), V ≡ 2Vsh/(γeff + 1) is the gas velocity
immediately downstream of the shock, and γeff is the
effective adiabatic index of the bubble. For a mixture of

thermal gas with γth = 5
3 and CRs with γCR = 4

3 :

γeff ≡
5 + 3w

3(1 + w)
, w ≡ PCR

PCR + Pth
, (4)

where w is the fraction of the total pressure in CRs [28].
Since Pth ' 3

4ρISMV
2
sh for a strong shock, w ≈ 4

3ξCR,
where ξCR is the CR acceleration efficiency defined above.

Introducing the SNR energy E(Rsh) ≡ 1
2MV 2 +

Eth + ECR, and using Pi/Ei = γi − 1, Eq. 3 can be
recast as:

Vsh(Rsh) =

=
γeff + 1

MR
λ/2
sh

[∫ Rsh

0

drrλM(r)

(
λE(r)

2r
− FISM

)] 1
2

,
(5)

where λ ≡ 6(γeff − 1)/(γeff + 1) and FISM ≡
4πr2PISM/(γeff + 1).

Finally, the SNR radius, Rsh(t), can be calculated by
using Eq. 5 and inverting

t(Rsh) =

∫ Rsh

0

dr

Vsh(r)
. (6)

During the Sedov stage E(Rsh) = ESN and its partition
into kinetic, thermal, and CR terms is fixed.
Pressure-Driven Snowplow Stage— When the post-

shock temperature drops below ∼ 106 K, the shell be-
comes radiative and the SNR energy decreses as

E(Rsh) = ESN −
∫ Rsh

Rrad

dr2πχthρISMV
2
shR

2
sh, (7)

where χth is the fraction of the energy flux across the
shock, ∼ 1

2ρISMV
3
sh, that is immediately radiated away

rather than added to the thermal gas. Typically, χth .
0.7, as calculated in the self-similar solution for an adia-
batic stage with CRs [table 6 of ref. 28]. While cooling
begins during the Sedov stage and depends on the den-
sity/temperature profile [e.g., 30], here we simply assume
that radiative losses abruptly kick in at Rsh = Rrad, cho-
sen according to the simulations of [7]. The energy ra-
diated away is subtracted from the thermal gas,
so that Pth drops and the SNR is increasingly sup-
ported by PCR; while γeff differs slightly between
the hot bubble and the shell [26], γeff → 4

3 in both
cases. Moreover, allowing γeff to vary between 4

3
and 5

3 introduces . 10% variations in pdep. We stop
the SNR evolution when the pressure inside the bubble
equilibrates with that of the ISM, which returns a satu-
rated pdep = MV (see Eq. 3).

The semi-analytical solution proposed here is original
in two respects: first, it accounts for the role of CRs in
the radiative stage; second, the physically-motivated pre-
scription for losses in Eq. 7 smoothly follows the SNR evo-
lution through the adiabatic and into the pressure-driven
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snowplow stage, unlike the standard thin-shell approxi-
mation [see, e.g., 7]. This formalism can be extended
to more complex environments including pre-SN stellar
winds [19] and multi-phase media [25].

RESULTS

SNR evolution with CR acceleration efficiencies ξCR

up to 20% is plotted in Figure 1. The presence of CRs
slows the shock slightly during the Sedov stage due to the
increase in the compressibility of the shell (lower γeff),
which reduces the size of the shell relative to the case
with thermal gas alone [26, 28]. However, the effect of
CRs reverses in the radiative stage; since the energy in
CRs cannot be radiated away, SNRs with CRs survive
longer. For typical parameters, this latter effect domi-
nates, meaning that CRs increase the amount of momen-
tum deposited in the ISM.

FIG. 1. Shock radius and velocity (Rsh and Vsh) as a func-
tion of time for various CR acceleration efficiencies, ξCR. In
all cases ESN = 1051 erg, Mej = 1 M�, nISM = 1cm−3, and
TISM = 8000 K. The dashed curve shows the adiabatic so-
lution with ξCR = 0 [29]. Circles indicate when the bubble
and ambient pressures equilibrate and momentum deposition
ceases. The larger the CR acceleration efficiency, the longer
the SNR evolution and the larger its final radius.

Figure 2 illustrates the net effect of CRs in regulating
momentum deposition. Whereas the ξCR = 0 shock stalls
at the onset of the pressure-driven snowplow, shocks with
CRs continue to expand. As a result, CRs typically
boost the momentum deposition by a factor of a few.
For an acceleration efficiency of ξCR = 10%, we find
pdep ≈ 9.8× 105M�km s−1, in good agreement with the
simple estimate in Eq. 1. However, the energy deposited
by the SNR in the presence of CRs is no more than 20%
larger than that of the gas-only case.

The effect of CRs becomes more pronounced in high
ISM densities, where radiative losses are stronger. Fig-

FIG. 2. Momentum deposited in the ISM, pdep, normalized
to a reference initial momentum p0, as a function of time
for various CR acceleration efficiencies, ξCR, with the same
parameters as in Figure 1. The gas-only case matches the fit
to hydro simulations well [7, dashed lines]; for typical values
of ξCR & 0.1, pdep is boosted by a factor of 2 to 3.

ure 3 shows pdep for SNRs expanding in media with fixed
pressure PISM ∝ nISMTISM but different nISM. An in-
crease in density slows the evolution of the shell, mean-
ing that it becomes radiative at an earlier time and, in
the absence of CRs, is substantially shorter-lived. For
ξCR = 0 the result is a weak inverse relationship between
ISM density and momentum deposited, pdep ∝ n−0.15

ISM ,
consistent with full hydro simulations [e.g., 7, 8]. How-
ever, when CRs sustain shell expansion, increased density
causes an increase in the swept-up mass that exceeds the
corresponding decrease in the shell’s velocity. The net
effect is a positive relationship between ISM density and
momentum deposited, pdep ∝

√
nISM ∝ 1/

√
TISM, as pre-

dicted by Eq. 1 (dashed curves in Figure 3).
At large densities, CR energy losses due to inelastic

proton–proton scattering and Coulomb interactions may
not be negligible. We model such losses using the follow-
ing rate that accounts for both effects [e.g., 4]:

Λloss ≈ (7.44µ+ 2.78)× 10−16nISMξCRESN erg s−1; (8)

the corresponding curves for pdep are shown as solid lines
in Figure 3 and reported in Table I. CR losses are neg-
ligible for nISM . 1 cm−3, but limit pdep for larger ISM
densities; eventually, the boost due to CRs saturates to
values & 5 for nISM & 10 cm−3. Given that CRs are
more important when radiative losses are more severe,
we also expect a boost in momentum deposition when
SNRs expand in a clumpy ISM, where without CRs pdep

is reduced due to rapid losses in the densest regions [e.g.,
8], and when they expand out of rarefied circumstellar
bubbles excavated by pre-SN stellar winds [e.g., 19, 31].

When SNRs expand into dense media, additional ef-
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fects may become important. First, the dynamics of
shocks in partially-ionized media are non-trivially af-
fected by the momentum and energy carried by neu-
tral atoms, which are coupled to the thermal protons via
charge-exchange [32, 33]; the presence of neutrals, which
requires a kinetic treatment and cannot be accounted for
in hydro/MHD simulations, generally tends to make the
shock weaker, reduce the post-shock temperature, and
hence make radiative losses more important. In this case,
including CRs should still increase momentum deposition
with respect to the gas-only case. Second, ion-neutral
damping [34] may reduce the scattering of CRs and en-
hance their escape rate, even if a quantitative assessment
of its relevance in realistic environments is still missing.
Third, in turbulent molecular clouds, SNRs may dissolve
when the shock speed becomes of order of the turbu-
lent speed; this may reduce pdep (see the discussion after
Eq. 1).

CR-loaded SNRs can sweep up more mass, leading
to more prominent γ-ray emission due to the decay of
neutral pions produced in nuclear interactions. Middle-
age/old (radiative) SNRs interacting with dense molecu-
lar clouds are often very bright in hadronic γ-rays [e.g.,
17, 35, 36]; the observed luminosities are typically ex-
plained with large efficiencies ξCR ≈ 0.1 and prolonged
CR confinement, which corroborates the assumptions of
our calculation.

The typical values ξCR that pertain to strong shocks
are in the range 0.1–0.2 [14], but re-acceleration of pre-
existing CRs can lead to even larger efficiencies, for in-
stance, in regions rich in young stars with powerful winds
and/or multiple SNe [37]. With this physical picture in
mind, in Figure 3 we also consider the very efficient case
ξCR = 0.4. For large densities nISM & 10 cm−3, the
asymptotic boost in momentum deposition can be gen-
erally expressed as ' 5

√
ξCR/0.1.

nISM (cm−3) pdep (105M�km s−1)
ξ = 0.00 ξ = 0.02 ξ = 0.05 ξ = 0.10 ξ = 0.20 ξ = 0.40

10−2 2.64 2.53 2.39 2.21 1.98 1.83
10−1 3.31 3.15 3.2 3.56 4.27 5.03
100 2.82 3.79 5.39 7.48 10.57 14.03
101 2.12 5.55 8.46 12.47 18.71 25.58
102 1.52 4.17 6.69 9.96 14.34 19.64

TABLE I. Momentum deposition for different ξCR and nISM

with fixed ambient pressure PISM ∝ nISMTISM, as plotted in
Figure 1. CR losses are included.

CONCLUSIONS

We have presented the first semi-analytical calculation
—in the thin-shell approximation limit— of the evolution
of a SNR throughout the adiabatic and radiative stages,
while including the dynamical role of CRs accelerated at
its forward shock. Despite the approximate treatment

10 2 10 1 100 101 102
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p d
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 = 0.02
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FIG. 3. Momentum deposited, pdep, for different values of
ξCR, as a function of the ISM density when the ambient pres-
sure PISM ∝ nISMTISM is kept constant; all other parameters
are fixed as in Figure 1. Solid and dashed lines correspond to
cases with and without CR losses due to proton-proton and
Coulomb collisions. At large densities the boost due to the
presence of CR saturates to a factor of 5–10 for ξCR & 0.1.

of the internal structure of the SNR, such an approach
accurately reproduces the main features of hydro simula-
tions without CRs. The presence of relativistic particles
that, unlike the thermal gas, do not radiate efficiently
sustains a prolonged expansion of the shell (Figure 1),
which has the net effect of increasing the total momen-
tum that each SN explosion can deposit in the ISM, pdep.
For typical acceleration efficiencies of ξCR & 0.1 [e.g., 14],
SNRs expanding into the warm ISM (TISM ' 104 K and
nISM = 1cm−3) deposit a factor of 2–3 more momen-
tum than without CRs (Figure 2). The impact of CRs on
SNR evolution is stronger when radiation losses are more
important, i.e., for dense and cold ambient gas. In such
conditions, despite CRs losing energy due to inelastic
proton–proton/Coulomb collisions, the boost in momen-
tum deposition is even larger and reads ' 5

√
ξCR/0.1.

Simulations of galaxy formation that include SN feed-
back via sub-grid models should account for the addi-
tional contribution of the CRs accelerated at SNR shocks;
we quantify this contribution as a factor of a few to ten
on top of the contribution of thermal gas alone, and pro-
vide the absolute values for pdep in Table I. Note that
this effect of CRs in shaping galaxies adds to that of the
galactic-scale CR pressure gradient, which may play a
role in launching galactic winds [e.g., 38–44].
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C. Sgrò, E. J. Siskind, F. Spada, G. Spandre, P. Spinelli,
A. W. Strong, D. J. Suson, H. Tajima, H. Takahashi,
T. Tanaka, J. B. Thayer, D. J. Thompson, L. Tibaldo,
O. Tibolla, D. F. Torres, G. Tosti, E. Troja, Y. Uchiyama,
G. Vianello, B. Wells, K. S. Wood, M. Wood, M. Yassine,
P. R. den Hartog, and S. Zimmer, ApJS 224, 8 (2016),
arXiv:1511.06778 [astro-ph.HE].

[37] D. Caprioli, H. Zhang, and A. Spitkovsky, ArXiv e-prints
(2018), arXiv:1801.01510 [astro-ph.HE].

[38] D. Breitschwerdt, J. F. McKenzie, and H. J. Voelk, A&A
245, 79 (1991).

[39] M. Salem and G. L. Bryan, MNRAS 437, 3312 (2014),
arXiv:1307.6215.

http://adsabs.harvard.edu/abs/2017arXiv170109062H
http://adsabs.harvard.edu/abs/2017arXiv170109062H
http://arxiv.org/abs/1701.09062
http://dx.doi.org/10.1088/0004-637X/770/1/25
http://arxiv.org/abs/1210.4957
http://dx.doi.org/ 10.1093/mnras/sty674
http://dx.doi.org/ 10.1093/mnras/sty674
http://arxiv.org/abs/1707.07010
http://dx.doi.org/ 10.1093/mnras/stw2941
http://arxiv.org/abs/1604.07399
http://dx.doi.org/10.1093/mnras/stx2656
http://dx.doi.org/10.1093/mnras/stx2656
http://arxiv.org/abs/1703.02970
http://dx.doi.org/10.1051/0004-6361/201424556
http://arxiv.org/abs/1410.7972
http://dx.doi.org/10.1088/0004-637X/802/2/99
http://dx.doi.org/10.1088/0004-637X/802/2/99
http://arxiv.org/abs/1410.1537
http://dx.doi.org/10.1093/mnras/stv562
http://arxiv.org/abs/1409.4425
http://dx.doi.org/10.1093/mnras/stv1155
http://arxiv.org/abs/1410.0011
http://dx.doi.org/10.1093/mnras/stw2746
http://arxiv.org/abs/1606.01242
http://adsabs.harvard.edu/abs/2018arXiv180206860G
http://arxiv.org/abs/1802.06860
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1978MNRAS.182..147B&db_key=AST
http://dx.doi.org/10.1086/182658
http://dx.doi.org/10.1086/182658
http://dx.doi.org/10.1088/0004-637X/783/2/91
http://dx.doi.org/10.1088/0004-637X/783/2/91
http://arxiv.org/abs/1310.2943
http://dx.doi.org/10.1103/PhysRevLett.114.085003
http://dx.doi.org/10.1103/PhysRevLett.114.085003
http://arxiv.org/abs/1412.0672
http://arxiv.org/abs/1412.0672
http://dx.doi.org/10.1051/0004-6361/201117855
http://arxiv.org/abs/arXiv:1105.6342
http://dx.doi.org/10.1126/science.1231160
http://arxiv.org/abs/1302.3307
http://dx.doi.org/10.1086/166834
http://dx.doi.org/10.1086/166834
http://dx.doi.org/10.1088/1475-7516/2011/05/026
http://arxiv.org/abs/1103.2624
http://arxiv.org/abs/1103.2624
http://dx.doi.org/10.1088/1475-7516/2012/07/038
http://arxiv.org/abs/1206.1360
http://arxiv.org/abs/1206.1360
http://dx.doi.org/10.1111/j.1365-2966.2008.14298.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14298.x
http://arxiv.org/abs/0807.4259
http://dx.doi.org/10.1016/j.astropartphys.2010.01.002
http://arxiv.org/abs/0912.2964
http://dx.doi.org/10.1088/0004-637X/794/1/47
http://dx.doi.org/10.1088/0004-637X/794/1/47
http://arxiv.org/abs/1407.2261
http://dx.doi.org/10.1103/RevModPhys.67.661
http://dx.doi.org/10.1103/RevModPhys.67.661
http://dx.doi.org/10.1103/RevModPhys.60.1
http://dx.doi.org/10.1103/RevModPhys.60.1
http://dx.doi.org/10.1051/0004-6361:20035950
http://arxiv.org/abs/astro-ph/0402598
http://arxiv.org/abs/astro-ph/0402598
http://dx.doi.org/10.1086/161338
http://dx.doi.org/10.1086/313176
http://dx.doi.org/10.1086/313176
http://adsabs.harvard.edu/abs/2011piim.book.....D
http://adsabs.harvard.edu/abs/2011piim.book.....D
http://adsabs.harvard.edu/abs/2011piim.book.....D
http://dx.doi.org/ 10.1086/155692
http://dx.doi.org/ 10.1088/0004-637X/755/2/121
http://arxiv.org/abs/1202.3080
http://dx.doi.org/ 10.1088/0004-637X/768/2/148
http://arxiv.org/abs/1211.6148
http://dx.doi.org/10.1086/149981
http://dx.doi.org/10.1086/149981
http://dx.doi.org/10.1088/0004-637X/717/1/372
http://arxiv.org/abs/1002.2738
http://dx.doi.org/10.3847/0067-0049/224/1/8
http://arxiv.org/abs/1511.06778
http://adsabs.harvard.edu/abs/2018arXiv180101510C
http://adsabs.harvard.edu/abs/2018arXiv180101510C
http://arxiv.org/abs/1801.01510
http://dx.doi.org/10.1093/mnras/stt2121
http://arxiv.org/abs/1307.6215


6

[40] S. Recchia, P. Blasi, and G. Morlino, MNRAS 462, 4227
(2016), arXiv:1603.06746 [astro-ph.HE].

[41] P. Girichidis, T. Naab, S. Walch, M. Hanasz, M.-M.
Mac Low, J. P. Ostriker, A. Gatto, T. Peters, R. Wünsch,
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