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We study a minimal Hubbard model for electronically driven superconductivity in a correlated
flat mini-band resulting from the superlattice modulation of a twisted graphene multilayer. The
valley degree of freedom drastically modifies the nature of the preferred pairing states, favoring spin
triplet d + id order with a valley singlet structure. We identify two candidates in this class, which
are both topological superconductors. These states support half-vortices carrying half the usual
superconducting flux quantum hc/(4e), and have topologically protected gapless edge states.

PACS numbers:

Recent experiments[1-3] demonstrate remarkable cor-
relation phenomena in twisted multi-layer graphene with
small twist angles, for which the resulting moiré pat-
tern induces an effective triangular superlattice with a
unit cell much larger than the microscopic one. The su-
perlattice generally induces mini-bands with a reduced
superlattice Brillouin zone. It was theoretically pre-
dicted that flat mini-bands should exist in such sys-
tems, an effect especially pronounced near “magic an-
gles” in bilayer systems [4-7]. When the mini-band at
the Fermi energy is much narrower than the effective
Coulomb interaction energy per electron, then correla-
tion effects may be expected. Experiments on bilayers[1]
and trilayers[3] find evidence for a correlated Mott insu-
lating state when such a mini-band contains an integer
number of electrons per superlattice unit cell. Further-
more, gate tuning the charge density away from the half-
filling bilayer moiré Mott insulator with 2 electrons per
unit cell led to superconductivity with strong coupling
characteristics[2]. Many features are strikingly similar to
those of the cuprate high-T,. materials, for which super-
conductivity also occurs in close proximity to a Mott in-
sulator. This raises the intriguing possibility of graphene
moiré superlattices serving as a new platform for uncon-
ventional superconductivity with unprecedented in-situ
tunability. The goal of the current work is to understand
the nature of the observed superconducting phases. We
argue that even in the simplest situation, the valley de-
gree of freedom of graphene leads to dramatic modifica-
tions to the superconductivity: the preferred states are
topological superconductors with a valley singlet struc-
ture.

Our results are based on the minimal description of a
correlated flat band in terms of a Hubbard model, with a
single “site” per unit cell. This is valid when the superlat-
tice period is large, and when the inter-band mixing may
be neglected. For such a flat band, the (weak) tunneling
between nearest-neighbor unit cells dominates the kinetic
energy. The large period suppresses interactions beyond
nearest-neighbor sites. Furthermore, each unit cell ef-
fectively hosts two degenerate orbital wave functions for

electrons, which correspond to the two original valleys
at the Brillouin zone corners, since the large unit cell
moiré modulation cannot mix these states due to their
large momentum space separation. Our starting point is
therefore a two-orbital Hubbard model on the triangular
lattice, with in total four flavors of single-electron states
on each site, including both the spin and orbital degrees
of freedom:
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Eq. 1 has an SU(4) symmetry which corresponds to the
rotation between the four flavors of electron states.

This symmetry is justified as follows. For the hopping
term, SU(2) spin-rotation invariance requires the hop-
ping to be spin-independent. Mixing between different
orbital states is prohibited by the large valley separa-
tion in momentum space. The reality and equality of the
nearest neighbor hopping amplitudes for the two differ-
ent orbitals follows, at least for twisted bilayer graphene
(Fig. 1), by careful consideration of 27/3 rotation, reflec-
tion y — —y (which exchanges the valleys) and reflection
x — —x. Thus with only nearest neighbor hoppings, the
SU(4) symmetry of the hopping term in Eq. 1 should be
an excellent approximation [39]. The SU(4) symmetry of
the U term follows from its dependence only on the total
charge of a site, which physically represents the capac-
itive energy of a superlattice unit cell due to “medium
range” Coulomb interactions, i.e. on scales large com-
pared to the microscopic lattice spacing but small com-
pared to the screening length. Corrections to this SU(4)
symmetry arising from short-range interactions do exist
and will be considered later, but are weaker than the
dominant SU(4) part by a factor proportional to a/ag,
where a is the superlattice spacing and ag is the micro-
scopic lattice spacing.

When the number of electrons per site of Eq. (1) is
7 = 1,2 or 3, and when U/t is sufficiently large, the
system becomes a Mott insulator. An effective SU(4)
Heisenberg model for the Mott insulator can be derived
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FIG. 1: a. The center of a unit cell of a bilayer graphene
moiré superlattice, where Wannier states are peaked in the
flat band. In this region there is AA stacking of the two
layers, and coordinates referred to in the text are defined as
shown. b. Independent single-particle states are built from
momenta near each of the two valleys shown as dark dots in
the microscopic Brillouin zone corners, and these become the
two orbitals in the Hubbard model of Eq. (1).

using the standard perturbation theory based on the
Hubbard model Eq. 1:

15
Hy=JY > 10Ty, (2)

(ig) a=1
where T = c;aTgﬁciﬁ, c;-racm = n and Tjg with
a = 1,---15 are fifteen 4 x 4 Hermitian matrices that

form the fundamental representation of the SU(4) Lie-
algebra (we choose TrTeT® = 459). The SU(4) spin
model Eq. 2 itself is already an interesting subject to
study, and compared with SU(2) spin systems, it is more
likely to support exotic spin liquid ground states [8-19].
But in this work we will focus on the superconductor
phase next to the Mott insulator after doping.

The Heisenberg interaction in Eq. 2 can be rewritten
in a different form (a Fierz identity[20]):

N
m=I % |- (&) &+ 00 ag). )
(ig)

where we defined the 6 component 51—]— = Aji and 10
component A;; = —Aj; pairing fields symmetric and
anti-symmetric, respectively, in i <+ j. Obviously, the
anti-ferromagnetic interactions (J > 0) appropriate near
half-filling favor condensing the operators ﬁij, which are
“even parity” in this sense, and we henceforth neglect the
odd parity channel. In fact, &ij transforms as an SO(6)
vector (SU(4)~SO(6)), when written in an appropriate
basis:

&ij =ct (032,1'002 o'2io% 020,2'021) Cjs (4)

7 ) 7

b 0

where 0% = 0% ® 0%, 0% = 1y49. The first and
second Pauli matrices in the tensor product operate

on the spin and valley spaces, respectively. The six-
component vector A® can be decomposed into a three
component spin-triplet and orbital-singlet pairing vector
A = (A',A?,A%), and another three component spin-
singlet and orbital-triplet pairing vector (A% A5 AS).
With the SU(4) symmetry of Eq. 1 and Eq. 2, these two
sets of three-component vectors are exactly degenerate.

Upon doping (for instance hole-doping), one can turn
on a kinetic term on Eq. 3, and the large U limit be-
comes a t-J model with a projection that prohibits more
than two particles per site. In an intermediate coupling
scenario we can simply add H; to the Hamiltonian to
represent the effects of antiferromagnetic fluctuations.
Then a standard mean field theory leads to a condensate
of Eij, i.e. superconductivity. Due to Fermi statistics,
this even parity pairing is antisymmetric in SU(4) flavor
space, which is the essence of superexchange that favors
antiferromagnetism. Amongst the even parity channels,
s—wave pairing is penalized by the large on-site Hub-
bard U interaction, and we expect d—wave pairing to
be favored. Previous studies for SU(2) superconductors
on the triangular lattice found that, to ensure the entire
Fermi surface is gapped, d2_,2 + idg, pairing is often
favored [21-27].

Now let us consider the effects of SU(4) symmetry-
breaking perturbations to the Hubbard model. Signifi-
cant effects arise from interactions, which are analogous
to Kanamori terms multi-orbital Hubbard systems. As
is usually the case for transition metal ions, we assume
that the most important of these is the Hunds coupling

H, ==V (S,)", (5)

where V' > 0 and S; is the total spin on site j. The
Hunds coupling Hj is expected to further prefer the
three-component spin-triplet and orbital singlet pairing
vector A over the other three components of the SO(6)
vector A. To see this, consider two nearest neighbor sites
that are both doped with one hole, i.e. each site is occu-
pied by one electron, at second order perturbation theory
in t/U. Suppose the two electrons form a spin-singlet
and orbital triplet state, then the virtual intermediate
state contains one doubly occupied site which increases
the energy relative to two singly occupied sites by 2U;
while if the two electrons form a spin-triplet state, then
the virtual intermediate state has energy 2U — 2V, which
is lower than the previous case due to the Hunds interac-
tion Eq. 5 (Fig. 2). Thus the Hunds coupling will select
the spin-triplet and orbital-singlet components from the
SO(6) vector &, and the energy splitting is at the or-
der of ~ t2/(2U — 2V) — t2/(2U) ~ Vt?/(2U?). The
analysis of the electron-doped case leads to the same
conclusion. Instead of the two site argument, one may
alternatively just consider the modification of the super-
exchange interaction of Eq. (3) by the V term. This



FIG. 2: The virtual process in second order perturbation the-
ory in ¢/U. An electron hops from the singly occupied site
on the right to the one on the left, making it doubly occu-
pied. The intermediate state may be (top) a spin triplet and
orbital singlet or (bottom) a spin singlet and orbital triplet.
The Hunds interaction favors the upper situation.

leads to a ferromagnetic contribution purely in the spin
sector ~ —J(V/U) 32,y Si+ S, which by a similar Fierz
identity favors triplet pairing.

It is noteworthy that the valley degree of freedom al-
lows the formation of an even parity (d-wave) spin triplet
state, which is impossible due to Fermi statistics for a
single orbital model. Here it occurs because the orbital
singlet is anti-symmetric. However, in our discussion we
defined the parity and angular momentum of the pair
with respect to the two-orbital Hubbard model. Micro-
scopically, parity also exchanges the two valleys, so in
terms of the large microscopic Brillouin zone, the even
parity d-wave state becomes an odd-parity f-wave one.
We stick with the former convention for concreteness.

Knowing that the system favors spin-triplet d + id or
d=+id pairing, most generally we can write the spin triplet
Cooper pair matrix in the BAG Hamiltonian as

Ay = (uk'In —|—Uk4’2) Cioto ®0’2, (6)
where wup = cosk, — cos%cos ‘/‘zky and v, =

V/3sin %sin \/iky are the periodic superlattice analogs
of the k2 — k7 and 2k,k, pairing functions, respectively.
Here ®; and ®, are both complex SO(3) spin vectors. To
minimize the energy and maximize the pairing gap on the
Fermi surface, there are two candidate states which are

degenerate at the mean field level:

A By =i®, =ige’?,
B : & =¢e’, ®;=poe’. (7)

Here ¢, ¢1, ¢ are all three-component real vectors under
spin SO(3) rotation, and ¢; - ¢po = 0. Other types of
spin-triplet superconductors, for example Ag ~ (ux +
1) (@1 +igs), with real vectors ¢ - o = 0, do not have
a uniform maximal gap on the Fermi surface, and are
thus less favorable within mean field theory than types
A and B.

Type A and B states are degenerate within the stan-
dard BCS mean field theory. This is apparent from com-
paring for example the type A state with ¢ ~ (0,1,0)
and the type B state ¢p; ~ (1,0,0) and ¢2 ~ (0,1,0).
In the former, both spin up and down electrons expe-
rience d + id pairing, while in the latter, the pair field
for up spin electrons is d + id, and the pair field for
down electrons is d — id. The gap magnitudes are ev-
erywhere identical in the two cases, and hence they have
the same mean field energy. This is the consequence of
an artificial symmetry in the mean field formalism: a
reflection symmetry k, — —k, on spin down electrons
only, which interchanges the two types of pairings. Tak-
ing the most general form of the pairing order parameter
®; = (up Py + vpP2) with complex vectors ®1, P, the
BCS mean field theory generates a Landau-Ginzburg free
energy

F =Y "r[®:” +g(|®*)° — c|®p- 2> (8)
7

The last term maintains the degeneracy between type A
and type B pairing, but disfavors other types of pairings.
In general, effects beyond the BCS treatment will gener-
ate additional terms in the Landau-Ginzburg free energy
and lift the degeneracy between type A and B. We will
not attempt to resolve which state is favored here, but
simply discuss the properties of both candidate states.

Consider time-reversal symmetry, which flips spin and
exchanges the two valleys, hence ¢ — o?'¢c. It also in-
duces complex conjugation, so it acts on the order param-
eter @y as T : @y — @ilz. Thus type A pairing breaks
time-reversal symmetry because wug + v — ur — Uk
under complex conjugation, while type B pairing is time-
reversal invariant.

Now consider the topology of the order parameter.
Within a single time-reversal sector, the type A state has
the ground state manifold [S? x S1]/Z. Here S? corre-
sponds to the configuration of the spin SO(3) vector ¢,
S! corresponds to the configuration of e?. The full order
parameter is invariant under a Zs transformation

d)_>_¢,

Due to this, type A pairing supports a half-vortex, anal-
ogous to that in the polar state of spin-1 bosons in cold
atom systems [28-30]. After tracing along a full circle
around the half-vortex core, both ¢ and e’ acquire a
minus sign (while A remains single valued). The half-
vortex carries a quantized magnetic flux

he
4e’

0 —0+m. (9)

Qo = (10)
which is half of the magnetic flux quantum of ordinary su-
perconductors. Moreover, as was discussed in Ref. [30], in
this purely two dimensional superconductor, the Mermin-
Wagner theorem dictates that SO(3) vector ¢ is disor-



dered at infinitesimal temperature due to thermal fluc-
tuations. Hence the system no longer has long-range or
even quasi-long-range order of A. Instead, what persists
are power-law correlations of a spin-singlet charge-4e or-
der parameter A - A ~ €2, The Kosterlitz-Thouless
transition out of this algebraic charge-4e superconduct-
ing phase is driven by unbinding of half-vortices, which
leads to a universal superconductor phase stiffness jump
8T,/ at the transition [30].

While type B pairing does not break time-reversal sym-
metry, it has similar finite temperature behavior. The
vectors ¢; and ¢, are disordered immediately by in-
finitesimal temperature, and the system effectively be-
comes an algebraic charge 4e superconductor with a half-
vortex that carries he/(4e) magnetic flux.

Both type A and type B superconductors are topo-
logical, in the sense that they both have gapless edge
states at their boundary. In the type A superconduc-
tor, the boundary has eight channels of chiral Majorana
fermions, which in the ideal case leads to a thermal Hall
conductance

Am2kAT
Ky = TB (11)

The edge states of the type-A superconductor are stable
against any disorder and interaction because they are chi-
ral and hence no backscattering can occur. In the type
A superconductor, because the spin symmetry is spon-
taneously broken down to U(1), one spin component is
still conserved: for ¢ ~ (0,0,1), this is S*. In this case,
it is convenient to introduce a new basis of fermion, for
orbital (valley) 1, define ¥4,1 = cq,1; for orbital 2, de-
fine o2 = 0350272, a,B =1,]. Then the entire mean
field Bogoliubov-de Gennes Hamiltonian for quasiparti-
cles reads

H =Y olH(k)y,
k
’H(E) = o+ A (ukagl + vk032) . (12)

In this basis, spin-up and spin-down fermions 4, ¥,
both have Hall conductivity o, = 2, which is visible in
Eq. (12) because the pair field acts in the orbital space
(second index v of o¥) as a vector in the 1 — 2 plane
which winds twice around the origin in momentum space.
Hence the eight channels of chiral Majorana fermion edge
states can be reorganized into two channels of chiral edge
states each for iy and ;. Thus the system also has a
“spin quantum Hall” conductance o§; = 4: namely, if we
couple the system to a “spin gauge field” A}, and spin-up,
spin-down electrons carry gauge charge +1 under the spin
gauge field A7, then after integrating out all the fermions,
the system generates a level-4 Chern-Simons term for the
background spin gauge field:L.s = ﬁeprfL&,Af,.

In the type B superconductor, the boundary has four
channels of counter propagating non-chiral Majorana

fermions, and there is no thermal Hall effect. The stabil-
ity of the edge states of type-B superconductor deserves
a bit more discussion. Let us again take ¢p; ~ (1,0,0),
and ¢o ~ (0,1,0), then this superconductor can be sim-
ply viewed as spin-up electrons and spin-down electrons
forming d + ¢d and d — id topological superconductors
separately, and its edge state Hamiltonian reads

4
H1d:/d$ Z XL,ai0zXL,a — XR,at0zXR,a- (13)

a=1

The order of ¢, and ¢o fully breaks SO(3) spin sym-
metry, while the Zs symmetry in Eq. 9 (a product of
m—rotation in the spin and charge sectors) is preserved.
The Z, symmetry acts on the quasiparticles of the su-
perconductor as a fermion parity for the right-moving
fermion xR, Only: Xr,0 = XL,as XR,a —> —XR,a, Which
also prohibits any mixing between left and right moving
modes. Without interactions, the classification of this
topological superconductor is obviously Z. Even includ-
ing interactions that preserve this Zs symmetry, the edge
state in Eq. 13 with four channels of nonchiral Majorana
fermions is still topologically stable, namely it cannot be
gapped out without breaking the Z symmetry [31-36].

In this work we considered electronically driven su-
perconductivity in graphene moiré superlattices within
a minimal single band triangular lattice Hubbard model
with spin+orbital degeneracy. We found that the valley
degree of freedom of graphene has qualitative effects on
the superconductivity compared to single-orbital Hub-
bard systems. Standard Hund’s coupling favors topolog-
ical d + id paired spin-triplet states. With SU(2) spin-
rotation symmetry, these states support exotic charge 4e
pairing and half-vortices at non-zero temperature. Thus
graphene may become not only a venue for strong corre-
lation physics, but also topological superconductivity.

Subsequent to the posting of the first version of this
preprint, a number of papers appeared emphasizing the
physics related to Dirac band crossings between a pair of
flat mini-bands appearing in some models of the moiré
superlattice[37, 38]. In this situation the two low energy
bands are intertwined and there is no obvious separa-
tion between them. Consequently, in the strong coupling
limit, the minimal description is two band honeycomb
lattice model, for which both the kinetic energy and in-
teractions are more complicated than in Eq. (1). In the
intermediate correlation regime, states near the Fermi en-
ergy dominate the superconductivity, and it is not clear
that either the additional band far from the Fermi energy
or any symmetry protected Dirac point plays a major
role. The weak activation gap in the MI phase does sug-
gests that the system only has an at most intermediate
correlation effect. We suggest that future experiments
which monitor the superconductivity while at the same
time inducing a measurable gap at the Dirac crossing
would be highly desirable, because they can directly test



whether band topology is actually relevant to the corre-
lation physics.

The major difference between Ref.[37] and our own
work is that the former invokes (SU(4)) ferromagnetism,
while we rely upon the effective anti-ferromagnetic in-
teraction, Eq. (2). However, ferromagnetism in Hub-
bard models is notoriously hard to find, and anti-
ferromagnetism may be more robust even when the
honeycomb description is more appropriate. The com-
pelling simplicity of the triangular framework suggests
that graphene moiré heterostructures which realize the
single band triangular regime are favorable for realizing
topological physics. This constitutes a design goal which
is realizable theoretically and experimentally.

Further studies should address these states quantita-
tively, the possibility of quantum spin liquid physics in
the Mott states, and the effects of perturbations to the
minimal Hubbard description such as second neighbor
hopping, disorder, magnetic fields, and more. The low
energy scale of these graphene superlattices allows vastly
larger tuning of doping and magnetic field axes in com-
parison to conventional correlated transition metal com-
pounds, and their pure two-dimensionality makes prob-
ing strictly Zeeman effects also possible. Our results may
serve as guidance for such future studies.
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