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We show that sharply defined topological quantum phase transitions are not limited to states of
matter with gapped electronic spectra. Such transitions may also occur between two gapless metallic
states both with extended Fermi surfaces. The transition is characterized by a discontinuous, but not
quantized, jump in an off-diagonal transport coefficient. Its sharpness is protected by a symmetry,
such as e.g. particle-hole, which remains unbroken across the transition. We present a simple model
of this phenomenon, based on 2D p + ip superconductor with an applied supercurrent, and discuss

its geometrical interpretation.

The advent of topological insulators and semimetals
[TH5] brought the realization that states of matter may
be distinguished by subtle topological indexes. The very
existence of such indexes primarily relies on symmetries
of the system, rather than its specific Hamiltonian [5HI0].
States with different topological indexes are separated
by sharp quantum phase transitions (QPT), which are
often associated with quantized jumps of certain trans-
port coefficients (such as e.g. Hall conductance in integer
quantum Hall effect[I1]). Traditionally topological QPT
are discussed between two gapped phases, e.g. insula-
tors or superconductors. Recently it was realized that
Weyl semimetals [12] [13], may exhibit genuine QPT be-
tween gapless states, if the chemical potential is tuned
to a nodal Weyl (or Dirac) point [I4, 15]. E.g. in Weyl
semimetals with mirror symmetry the Hall conductance
exhibits a discontinuous quantized jump [I6}, [I7].

The goal of this letter is to point out that the topo-
logical transitions are not limited to the gapped states of
matter, or states with the point Fermi surface. Instead,
they may persist well into a true metallic state with an
extended Ferm surfaces and a finite density of delocalized
states at the chemical potential. Consequently, there are
sharp QPT’s between topologically distinct metallic (as
opposed to semi-metallic or insulating) phases. One may
dub them topological metals (TM), to distinguish from or-
dinary metals. Across QPT between TM and a metal a
physical observable, associated with the topological index
(e.g. an off-diagonal conductivity), exhibits a discontinu-
ous jump. In contrast to topological QPT in insulators or
semimetals, such jump is not quantized. The topological
QPT in metals should be necessarily protected by some
symmetry. In the absence of any symmetry the metallic
QPT gives way to a smooth crossover, invalidating the
sharp designation of TM phase. Doped Weyl semimet-
als [I3], 18-20] (sometimes called topological metals) are
usually examples of this latter scenario, as discussed be-
low.

To illustrate these ideas we shall use a two-dimensional
(2D) example, which belongs to the symmetry class D [3-
(5L @, 2T]. This class is realized, for example, by p + ip
superconductors [22H24], which break time reversal sym-
metry and the only protected symmetry is the particle-
hole one. The latter is encoded within the Nambu struc-
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FIG. 1. Brillouin zone mapping onto closed d(k) surface in
3D d-space for t = 1, A = 0.5. The monopole, located at
the origin d = 0, is shown in red. Trivial phase is shown
for u = —5, topological phase for y = —2.5. The Berry flux
through the surface is zero in the trivial phase and quantized
in units of the monopole charge in the topological phase.

ture of the corresponding Bogoliubov-de Gennes (BdG)
Hamiltonian, Hpge(k), where k is a quasi momentum in
a 2D Brillouin zone (BZ), as [3, 5]

P 'Hpgc (k)P = —Hpaa(—k). (1)

Here P = 0, K, where K is complex conjugation operator
and o, is the Pauli matrix in Nambu space with the basis
Uy = (ck, cT_k)T. A generic Hamiltonian has a form

Hpac(k) = do(k) +d(k) - o (2)

where dy(k) and d(k) = (ds, dy, d.) are functions of mo-
mentum. The particle-hole symmetry, Eq. , restricts



do,z,y(k) to be odd, while d.(k) even, under k < —k.
The spectrum consists of two bands with energies

e = dolk) £ /a2 (k) + 2(k) + 2(k),  (3)

which may only touch when d = 0. In the simplest exam-
ple of the square lattice [1, 25]: dy =0, d, = —2Asink,,
dy = —2Asink, and d, = —2tcosk, — 2tcosky, — i
where ¢, © and A are hopping parameter, chemical po-
tential and p-wave pairing amplitude, correspondingly.
The spectrum is fully gapped everywhere away from
the topological QPT. The later takes place at u = F4¢
and results in a gapless point at k = (0,0), or (m, ),
correspondingly.

The topological properties stem from the homotopy
group Z [3H5] associated with the mapping of the 2D
BZ (torus) onto the 3D space spanned by the vector d.
(Notice that do(k) component, being commutative with
the Hamiltonian, is not related to the topology; it may
be important however in assigning occupation numbers
to states with momentum k.) The image of BZ, k €
BZ, is a closed 2D surface d(k) in the 3D d-space, with
an integer Z wrapping around the gapless point d = 0.
The topological QPT, associated with the change of the
integer wrapping number, occurs if the gapless point d =
0 lies on the BZ image (in our example this only happens
at pu = F4t), see Fig. [I] In the cylindrical geometry of
Fig. [2| the topological index counts a number of gapless
chiral modes localized near the two edges of the cylinder.

The physical quantity, sensitive to the topological in-
dex, is the intrinsic (anomalous) Hall conductance. In
the case of the superconductor the object of interest is
the thermal Hall conductance U%, given by the ratio of
the thermal current in the x-direction to the tempera-
ture gradient applied in the y-direction, Fig. 2l It origi-
nates from the anomalous velocity of Bloch electrons due
to the Berry curvature term [26] 27] in the semiclassical
equations of motion. According to Kubo-Streda formula
[25] 28], the anomalous thermal Hall conductance (in unit

2
of mT) is given by the integrated Berry curvature:
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int ko n n
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where Q,(zn)(k) is the z-component of the Berry curva-
ture, defined as the momentum space curl of the Berry
connection M (k) = Vi x A™ (k) and A™ (k) =
(u™ (k) [iVi|u™ (k). Here |u(™(k)) is a Bloch wave-
function in the band n and f(e, ") is the Fermi function.

For a fully gapped system at a temperature T" much
less than the gap Eq. leads to a quantized anomalous
conductance. For example, the gapped two-band model,
described by the Hamiltonian , results in
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FIG. 2. Schematic geometry of the system discussed in the
text.

This expression may be viewed as a flux of a monopole,
located at d = 0, through the closed surface d(k), Fig.
Indeed, d?k(8k,d x Ok, d) is the area element of the sur-
face, while ﬁ is the field strength of the monopole
with the unit “charge”. Due to Gauss’s law, such a flux
is quantized and proportional to the integer wrapping
number Z of the BZ image d(k) around d = 0. This is
the essence of the familiar conductance quantization in
topological insulators [11, 2] 29, [30].

Let us now modify the model to bring it to the metallic
state. The simplest way of doing it is to introduce a
magnetic flux ® through the cylinder of Fig. [2l The flux
induces the supercurrent in the z-direction, breaking the
reflection symmetry, e(_",i #* egc"). In the presence of the
flux the order parameter acquires a spatial dependence:
A(z,y) = Ae'?® where Q = ®/(N®() with N number
of lattice periods around the cylinder [31]. Upon a gauge
transformation this leads to the Hamiltonian with
following parameters:

do = 2tsin k, sin Q/2,
dy = —2Asink,, dy = —2Asink,, (6)
d, = —2tcoskg cos Q/2 — 2t cosk, — p.

Notice that the particle-hole symmetry (1) and symmetry
class D are still intact and so is the topological quanti-
zation of a;‘;}, as long as the spectrum remains fully
gapped. This is indeed the case for sufficiently small flux
|Q| < Qr = 2arcsin(A/t). Figure [3fa) shows spectrum
for the cylindrical geometry of Fig. [2] which clearly ex-
hibits chiral edge modes at @ = .1 < Q. It also shows
d(k) surface, which encloses the monopole at d = 0.

At |Q| = Qp the system undergoes the Lifshitz
transition[32, B3] into metallic state. This is shown in
the upper row of Fig. b), where one can clearly see
two metallic bands: one is particle-like and the other is
hole-like. The corresponding Fermi surface consists of
two disconnected closed curves in the 2D BZ. However,
this is not yet the topological QPT, as one may notice
by the presence of the chiral edge modes in the spectrum
of Fig. b). Since the edge modes coexist now with
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FIG. 3. The three rows show spectra as function of k,, BZ with the Fermi surfaces, 3D d-space with the d(k) surface (gold),
monopole at d = 0 (red) and Fermi double cone, Eq. (7)), (blue). The four columns correspond to different value of flux Q: (a)
topological superconductor; (b) topological metal; (c) topological QPT; (d) ordinary metal. Figurespeciﬁes other parameters.

the bulk states at the Fermi level, one does not expect
a quantized thermal Hall conductance. Indeed, expres-
sion for the intrinsic conductance is still valid with
the understanding that the integral runs only over the
k-states with one occupied band (at T' = 0). Thus the
d(k) surface developes two holes — the images of the 2D
Fermi curves.

To understand it geometrically one may notice that
dp = —% sin(Q/2)d, and therefore the equations for the

Fermi curves egci) = 0 acquire the form (cf. Egs. , @)

sin?(Q/2)

2
dI*’[l"snP(QL/2>

]@+@:Q ™)

where sin(Qr/2) = A/t. For |Q| > Qr this condition
spells the double cone in the d-space with the apex at
the monopole d = 0. The images of the Fermi curves are
thus found as the intersections of the cone, Eq. @, with
the closed surface d(k), Figs. B(b-d). The flux of the
monopole, which contributes to o;r;f, Eq. , is therefore
less than the quantized value by the amount of the flux

channeled through the cone @

o (@) = sin % sin 9, 0
where | sin(Q/2)| > sin(Qr/2), see Fig.[i] The phase dia-
gram of the system is schematically depicted in Fig.|[pl At
the Lifshitz transition the system goes from the topolog-
ical insulator (superconductor) phase to the TM phase.
It is is characterized by the coexistence of the bulk states
at the Fermi level with the chiral edge modes. The lat-
ter are responsible for the intrinsic contribution to the
thermal Hall conductance, which is not quantized.

It turns out that the Lifshitz transition is followed
by another transition at |Q] = Qr(u) > Qr, where
cos(Qr/2) = 1— % This second transition separates
two topologically distinct metallic phases. At the transi-
tion the two Fermi curves touch each other at the single
point d = 0, Fig. c). On the other side of the transition
the two Fermi curves separate again, Fig. d), and the
edge states disappear. In the 3D d-space the apex of the
cone (7)) crosses the surface d(k) and the Berry flux of
the monopole, Eq. , undergoes a discontinuous jump



2
FIG. 4. Thermal Hall conductance (in unit of %T ) vs. flux.

Q1 and Qr are location of Lifshitz and topological transitions.
Solid line — the intrinsic contribution, Eq. ; dashed line —

(schematic) skew scattering contribution in 7" — 0 limit.

FIG. 5. Phase diagram of the model Egs. , @ on chemical
potential vs. flux plane. I - topological insulator (supercon-
ductor); II - topological metal; III - ordinary metal; IV -
ordinary insulator. Solid red lines — topological QPT, solid
black lines — Lifshitz transitions. Red stars show parameters
of columns (a-d) in Fig.

down to zero. The non-quantized hight of the jump is
given by ot = sin %/Sin % <1, cf. Eq. .

The sharp topological QPT at Q7 allows for unam-
biguous distinction between TM and the ordinary metal
states. This sharp distinction is protected by the particle-
hole symmetry, Eq. (). Indeed, since the surface d(k) is
punctured by the holes created by the Fermi curves, one
may expect the Berry flux and J;I;Jt to evolve to zero in
a smooth continuous way. This is the case, if the gapless
point d = 0 moves (as a function of some parameter)
through one of those Fermi punctures. Such scenario, in-
validating the notion of the sharp TM phase, takes place
in doped Weyl semimetals. There the monopole, mov-
ing as a function of k. (the momentum in the direction
connecting the two nodes) [13], 18|, 19], goes through the
Fermi hole, smearing the topological transition[34].

In our case the particle-hole symmetry, Eq. , (in
Weyl materials it is broken by doping) ensures that d = 0
point can’t fall inside any of the Fermi punctures, but can
only simultaneously touch both of them. The double cone
construction, Eq. @, is a geometric manifestation of the
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symmetry . It shows that the Berry flux through the
punctured d(k) surface must change discontinuously at
the topological QPT.

Let us now briefly discuss the role of disorder. The
latter has two distinct effects on the discussed phenom-
ena. In the metallic phase (being treated beyond the
Born approximation) it generates additional contribution
to the thermal Hall conductance, known as the skew-
scattering [35H41], Fig. El Its specific value depends on
the details of the disorder [38] [39] and may exceed the
intrinsic contribution, discussed here. The important ob-
servation is that the skew-scattering contribution, being
a bulk phenomenon, is continuous across the topological
phase transition at Q@ = Qr [42]. It therefore does not
alter the discontinuity in o,,, but merely adds a smooth
background.

The second effect of the disorder is associated with the
modification of the intrinsic contribution itself. We per-
formed numerical simulations on small (way smaller than
the localization length) lattices in the cylindrical geome-
try [42]. It showed that for each disorder realization the
discontinuity 0;‘23 exists, though it’s location and height
fluctuate from one realization to another. In the thermo-
dynamic limit, we expect the Anderson localization to
stabilize the topological transition [43H47], in a way sim-
ilar to the integer quantum Hall effect. However, such
a transition separates now topologically distinct Ander-
son insulator, rather than metallic, phases. Though a full
theory of such transition in 2D class D [46] is still absent,
it’s likely that localization restores quantization of o, .

To conclude, we have shown that the sharp definition
of the topological states may be extended onto a gap-
less metallic phase. An unbroken symmetry is required
to enforce identity of such topological metal state. As
an example we worked out class D[48], p + ip supercon-
ductor subject to a super-current. The TM phase, pro-
tected by the particle-hole symmetry, appears in a cer-
tain finite range of the super-current densities. It may
be detected by a jump of the thermal Hall conductance,
associated with the discontinuous change of the Berry
curvature flux.
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