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At low energy, the dynamics of excitations of many physical systems are locally constrained. Ex-
amples include frustrated anti-ferromagnets, fractional quantum Hall fluids and Rydberg atoms in
the blockaded regime. Can such locally constrained systems be fully many-body localized (MBL)?
In this article, we answer this question affirmatively and elucidate the structure of the accompa-
nying quasi-local integrals of motion. By studying disordered spin chains subject to a projection
constraint in the z-direction, we show that full MBL is stable at strong z-field disorder and identify
a new mechanism of localization through resonance at strong transverse disorder. However MBL is
not guaranteed; the constraints can ‘frustrate’ the tendency of the spins to align with the transverse
fields and lead to full thermalization or criticality. We further provide evidence that the transition is
discontinuous in local observables with large sample-to-sample variations. Our dynamical phase di-
agram is accessible in current Rydberg atomic experiments which realize programmable constrained
Ising Hamiltonians.

PACS numbers:

At low energy, the dynamics of many physical systems
are restricted to Hilbert spaces with local constraints.
For example, the canonical spin-ice compound Dy2Ti2O7

has Ising-like magnetic moments that obey a local ice
rule at low temperature [1, 2]. Electronic systems such as
the fractional quantum Hall liquids and p-wave supercon-
ductors [3–10] are believed to host quasi-particles with
non-Abelian statistics, which produce a topologically de-
generate manifold of states within which the low energy
dynamics are constrained. Finally, Rydberg excitations
of cold atomic chains [11, 12] are energetically forbidden
to occupy adjacent sites in the blockaded regime.

Little is known about the dynamical phases of locally
constrained systems in isolation [13–16]. Although their
Hilbert space lacks a tensor product structure, there is a
notion of locality because the influence of local measure-
ments decays exponentially in space [13]. This suggests
that constraints pose no impediment to local thermaliza-
tion, as was numerically verified in pinned non-Abelian
anyon chains [13] and in dimer models [14]. But what
of the effects of spatial disorder? In unconstrained sys-
tems, quenched disorder can localize quantum particles
and prevent the transport necessary for equilibration in
isolation [17], a phenomenon known as many-body local-
ization (MBL) [18–60]. In this article, we show that con-
straints pose no impediment to localization and present
a model exhibiting new constraint-driven MBL and ther-
mal phases (Fig. 1).

Local constraints have two opposing effects on poten-
tially MBL systems. The constraints disallow certain in-
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FIG. 1: Infinite temperature dynamical phase diagram of the
constrained Ising model in Eq. (1) in which adjacent spins
are forbidden to both point along −z (inset). The mean level
spacing ratio [r] distinguishes the localized region with Pois-
son level statistics (blue, [r] ≈ 0.39) from the thermalizing
region with random matrix level statistics (red, [r] ≈ 0.53).
At large Wz/Wx, the localization transition approaches the
dashed line (see text), while at small Wz/Wx, the transition
line intersects the x-axis at gx/Wx ≈ 1 (black dot).

termediate states, blocking perturbative relaxation chan-
nels and yielding more robust localization. This is the
case for the ‘diagonal MBL’ phase in Fig. 1. However,
when the constraints are transverse to the disorder, they
may frustrate localization by forbidding extremal eigen-
states of the disorder potential, effectively decreasing
the energy detuning between adjacent spins. This effect
partly underlies the robust energy transport in strongly
disordered pinned non-Abelian anyon chains [16, 61–67],
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and leads to the ‘constrained thermal’ phase in Fig. 1.
Surprisingly, such frustration does not preclude localiza-
tion – in the ‘constrained MBL’ phase, the spins in re-
gions with weak potential are pinned such that nearby
spins may resonate and become approximate eigenstates
of the transverse disorder potential without violating the
constraints. Thus, localization is favored by a mecha-
nism reminiscent of ‘order-by-disorder’ in frustrated spin
systems [68].

Concretely, we study an open Ising chain of N spins
whose Hilbert space H̃N satisfies the constraint that
neighboring spins cannot simultaneously point along −z
(see Fig. 1, inset). This Hilbert space describes quan-
tum dimer ladders [69], pinned Fibonacci anyon chains
[13, 70], and Rydberg blockaded chains [71]. The di-

mension of H̃N is given by FN+2, where FN is the Nth
Fibonacci number. As FN ∼ φN with φ ≡ (

√
5 + 1)/2

the golden mean for large N , the quantum dimension is
irrational. The Hamiltonian of the system is:

H =

N∑
i=1

(
giX̃i + hiZ̃i

)
(1)

where gi and hi are independently drawn on each site
from box distributions gx + [−Wx,Wx] and [−Wz,Wz]

respectively, and X̃i = Pσx
i P , Z̃i = Pσz

i P are the pro-
jected Pauli operators σx,z

i on site i. The projection oper-
ator P annihilates any z-configuration with the ↓↓ motif,

P =
∏
i

(3 + σz
i + σz

i+1 − σz
i σ

z
i+1)

4
, (2)

so that X̃i can flip spin i only if Z̃i−1 = Z̃i+1 = 1.
Without constraints, each spin independently precesses
around its local field and there is neither transport of en-
ergy, nor local equilibration. The constraints force neigh-
boring spins to interact as [X̃i, X̃i+1] 6= 0, producing the
rich dynamical phase diagram in Fig. 1.

The diagonal MBL phase: The restriction to H̃N is
trivial whenH is diagonal in the z-basis (gi ≡ 0). This di-
agonal limit is localized; every eigenstate |E〉 is uniquely
labelled by the string of its ±1 eigenvalues under the
operators, Z̃i for i = 1, . . . N . The strings satisfy the
constraint:

|E〉 = |{Z̃i}〉, Z̃i and Z̃i+1 6= −1 (3)

The local conserved operators Z̃i define l-bits, which un-
like their unconstrained counterparts, satisfy a restricted
algebra wherein Z̃iZ̃i+1 = Z̃i + Z̃i+1 − 1. This implies
that the FN+2 tensor product operators which do not

contain both Z̃i and Z̃i+1 for any i form basis for the
space of conserved operators [69].

Imbrie [50, 72] rigorously showed that the closely re-
lated unconstrained model:

HIM =

N∑
i=1

giσ
x
i + hiσ

z
i + Jiσ

z
i σ

z
i+1. (4)
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FIG. 2: Probability distribution of 〈E|Z̃i|E〉. In the diago-
nal MBL phase (panel (a)), the distribution is bi-modal with
maxima near ±1. In the constrained thermal phase (panel
(d)), the distribution concentrates around the infinite tem-
perature average of 1/

√
5 (dashed line). In the constrained

MBL phase (panel (b)) and at the transition (panel (c)), the
distribution shows features of both MBL and thermal phases.

can be diagonalized using a sequence of quasi-local uni-
tary operators U . Since terms containing r spins appear
in the generator of U with an amplitude that is (with high
probability) exponentially small in r, the l-bits at gi = 0
extend to quasi-local l-bits at small gi: τzi ≡ Uσz

i U
†.

These l-bits underlie the integrability, the dephasing dy-
namics and the low eigenstate entanglement of the fully
MBL phase [26, 30, 48–54, 73].

The above arguments can be adapted to argue for full
MBL in our model when gx,Wx � Wz (upper-left cor-
ner of Fig. 1). Specifically, as (i) the constraints do not
affect the level statistics of the spectrum of the diagonal
limit at gi = 0, and (ii) certain terms only appear in
the rotated Hamiltonian at higher order in perturbation
theory as compared to the unconstrained case, we can
perturbatively construct a quasi-local unitary U which
diagonalizes Eq. (1) with high probability and defines l-

bits: τ̃zi = UZ̃iU
† with the same properties as Eq. (3) in

the diagonal limit. U also defines the quasi-local operator
τ̃xi that flips the z-eigenvalue of the l-bit i: τ̃xi = UX̃iU

†.
As in the diagonal limit, [τ̃xi , τ̃

x
i±1] 6= 0.

We support these claims with exact diagonalization
performed on Ns ≥ 1000 samples at N = 14 − 18 and
Ns = 500 samples at N = 20. Within each sample,
we consider the central third of the sites and the cen-
tral third of the eigenspectrum. At large Wz, we ex-
pect that the l-bit τ̃zi is a weakly dressed version of Z̃i

with a finite fraction of its operator weight on Z̃i. As
〈E|τ̃zi |E〉 = ±1, we expect a bi-modal distribution for

〈E|Z̃i|E〉 with weight primarily at ±1 as N → ∞. This
is confirmed by Fig. 2(a). The (small) weight between
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−0.5 and 0.5 comes from eigenstates in which spins i− 1
and i+ 1 point primarily along +z, so that spin i points
along/against its local field direction. As the local field
is in the x-z plane, the z-projection of spin i is reduced
[69].
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FIG. 3: [r] (main plot) and [S]/SP (inset) for Wz = 0. Both
quantities approach their respective thermal values of rGOE

and 1 with increasing N for gx/Wx > 1, suggesting that the
transition is at gx/Wx = 1 in the thermodynamic limit.

The constrained thermal phase: When the maximum
x-field gx+Wx is comparable to the typical z-field ∼Wz,
the perturbative construction of the quasi-local unitary
breaks down and a thermal phase emerges. This suggests
that the phase boundary lies at Wz/Wx ∼ gx/Wx + 1 for
large Wz/Wx (dashed line in Fig. 1). The constrained
thermal phase persists to small Wz/Wx for gx/Wx � 1,
in agreement with the intuition that weakly disordered,
strongly interacting models thermalize. Indeed Fig. 2(d)
confirms that the model satisfies the eigenstate thermal-
ization hypothesis (ETH) [74–78] expected of thermaliz-
ing phases, in which individual eigenstates reproduce the
expectation values of the thermal ensemble [69]. Specif-

ically, panel (d) shows that P (〈E|Z̃i|E〉) concentrates

around the infinite temperature value of 1/
√

5 with in-
creasing N , in contrast to the distribution in the MBL
phase in panel (a).

The constrained MBL phase: Strikingly, numerical sig-
natures of localization persist in the lower left corner of
Fig. 1 (gx,Wz �Wx), when the x-field dominates the z-
field on most sites. As adjacent spins cannot simultane-
ously align/anti-align in the x-direction ([X̃i, X̃i+1] 6= 0),
the mechanism underlying localization must be qualita-
tively different than in the diagonal MBL phase. To
expose this mechanism, consider a 3-site chain with
g1 6= g3 > 0, but g2 = 0. There are five eigenstates:
four of them |X̃1 = ±1, Z̃2 = 1, X̃3 = ±1〉 have energies

±g1 ± g3, while the fifth |Z̃1 = −1, Z̃2 = 1, Z̃3 = −1〉 has
zero energy. In other words, the x fields on sites 1 and 3
create an effective z field of order |g3 − g1| on site 2. If

|g2| � |g3 − g1|, Z̃2 will be approximately conserved!
In the model in Eq. (1) with strong and weak x-field

segments of varying length, a similar mechanism can gen-
erate effective z-fields on sites with weak x-fields. The
Hamiltonian on a finite strong segment satisfies the ETH;

the effective z-field on an adjacent weak x-field site i is
therefore set by the level spacing of the strong segment.
When this effective z-field exceeds gi (i.e. when the seg-

ments are not too long), we expect that Z̃i ≈ ±1 in all
eigenstates. At Wz > 0, the bare z-fields stabilize this
‘constrained MBL’ phase in two ways: (i) they add to the
z-field on weak sites, and (ii) they increase the strength of
the effective z-field generated by strong segments by de-
creasing the length of the typical strong segments. Once
the typical z-field exceeds the x-field on each site, the sys-
tem smoothly crosses over into the diagonal MBL phase.
Fig. 2(b) confirms this picture: the distribution 〈E|Z̃i|E〉
shows significant weight at ±1, coming from weak x-field
sites that are pinned in the z-direction. The strong seg-
ments account for the weight near the thermal value of
1/
√

5. The lack of concentration of measure around the
thermal value with increasing N indicates that the length
of the strong segments is finite (see the supplemental for
further details [69]).

At Wz = 0, atypically long strong segments may
destabilize the localized phase through avalanche effects
[79]. Numerically, the proximity to the thermal transi-
tion also complicates the interpretation of the data at
Wz = 0, gx/Wx < 1, as we discuss below. We now show
that without such rare segments, our argument for local-
ization can be made rigorous. To this end, consider the
‘strong-weak-strong’ (SWS) model obtained from Eq. (1)
by taking hi = 0 and repeating the 3-site x-field motif
discussed above:

gi ∈

{
[−δw, δw] , if i = 0 mod 3

[1− δs, 1 + δs] , otherwise.
(5)

For δw = 0, the local operators Ô3i =
g3i+1X3i+1 + g3i+2X3i+2 and Z̃3i commute with
one another and with H. The eigenvalues

ε3i = 0,±g3i+1,±g3i+2,±
√
g23i+1 + g23i+2 of the Ô3i

uniquely label the eigenstates, and the energies are given
by
∑

3i ε3i. Thus, this model is trivially localized with

conserved operators given by {Ô3i}.
In the supplementary material [69], we again adapt the

methods of Ref. [50, 72] to argue that full MBL persists
for δw � δs in the SWS model. Specifically, as the energy
spectrum obeys limited level attraction at δw = 0, and
resonances can occur only if two nearby strong fields dif-
fer by an amount ∼ δw, there exists a quasi-local unitary
that diagonalizes H and defines a set of l-bits at small
δw. This demonstrates that fields that commute with the
constraint are not, in general, necessary for localization.
The line Wz = 0: For Wz = 0, the minimum x-field

given by gx − Wx controls the phase diagram. When
gx > Wx, there are no weak x-fields and we expect ther-
malization, while for gx < Wx, we expect a constrained
MBL phase up to rare region effects. In Fig. 3, we use
two measures to test this: (a) the mean level spacing
ratio [r] [22, 80], and (b) the mean half-chain entan-
glement entropy [S]. r(n) is defined as min(δ(n), δ(n +
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FIG. 4: Normalized standard deviation of the half chain en-
tanglement entropy ∆S/SP at Wz = 0 parsed by samples,
states, and cuts, showing that the largest contribution comes
from the inter-sample variance near gx/Wx = 1.

1))/max(δ(n), δ(n+1)) with δ(n) = En−En−1 when the
energies Ei are enumerated in increasing order, while S
is defined as −TrρL log2 ρL, where ρL is the reduced den-
sity matrix of the left half of the chain in eigenstate |E〉.
The mean is taken with respect to sites, states and sam-
ples and the normalization SP is the finite-size corrected
entropy [81] of an infinite temperature state [96]. The
finite-size flow of [r] and [S]/SP towards their respective
thermal values of rGOE and 1 confirms the thermal phase
for gx > Wx.

In the constrained MBL phase, we expect [r] → rPoi
and [S]/SP → 0 with increasing N . While [r] exhibits
some finite-size flow towards rPoi for gx < Wx in Fig. 3,
there is little flow in [S]/SP . This is likely due to
the proximity to the (same) transition at gx = 0 and
gx = Wx. Since performing local rotations about the
z-axis on sites with gi < 0 yields an equivalent model
with strictly positive x-fields, gx = 0 and gx = Wx rep-
resent the same dynamical transition: there is a sample
at gx = Wx for every sample at gx = 0 with the same
eigenstate properties. Whether rare region effects are
also important will be addressed in future work [82].

At the purported transition gx/Wx = 1, the distri-

bution of 〈E|Z̃i|E〉 in Fig. 2(c) exhibit sharp features
at four values: ±1, 0 and at the infinite temperature
value of 1/

√
5. That is, spins either point along ±z, ±x,

or are locally thermal in eigenstates. The thermal peak
height increases with increasing N , while the other fea-
tures persist, suggesting that (i) the transition point is
heterogenous with respect to local observables, and (ii)
eigenstate expectation values of local observables jump
across gx/Wx = 1.

In order to determine the origin of the striking het-
erogeneity, we use different evaluations of the normalized
standard deviation ∆S/SP following Ref. [83]. Fig. 4
shows three possibilities: (i) inter-sample ∆s[S]E,c, (ii)
intra-sample across eigenstates [∆E [S]c]s, and (iii) intra-
sample across the position of the cuts [∆cS]E,s, where
s, E, c respectively refer to sample, eigenstates, and cuts.

In the thermal phase for gx/Wx > 1, all three quantities
go to zero with increasing N , showing that S for any po-

sition of the cut in any eigenstate in any sample is repre-
sentative of the phase. At gx/Wx = 1, on the other hand,
the inter-sample deviation dominates and even slightly
increases with N , while the other two variations decrease
with N . This strongly suggests that the transition is like
an equilibrium first-order transition [84, 85] in which all
of the variation in S comes from inter-sample variation in
the x-fields. This scenario has been suggested by several
works [83, 86–88], and our model provides the first clear
microscopic observation. We note that the increase in
∆s[S]E,c/SP with N cannot indefinitely continue as the
variable is bounded.

Discussion: We have studied the fate of MBL in a con-
strained disordered system, and found that constraints
can either assist or frustrate localization, depending on
whether or not they commute with the random fields.
We have also shown by explicit construction that ran-
dom fields transverse to the constraint lead to localiza-
tion through a new resonance mechanism. Finally, we
have provided strong evidence that the transition out of
the thermal phase is ‘first-order’, in the sense that the
primary variation of the half-chain entanglement entropy
comes from inter-sample variation and that local observ-
ables vary discontinuously across the transition.

There are a number of interesting directions for further
study. Recently, Ref. [66] argued that MBL is impossi-
ble in in pinned non-Abelian anyon chains, partly due
to the lack of a tensor product Hilbert space. Since we
have shown that constraints alone do not prevent local-
ization, this delocalization must be a consequence of the
SU(2)k symmetry respected by the anyon Hamiltonians.
Constrained models may also provide simpler realizations
of the non-ergodic delocalized phase posited in the non-
Abelian systems [65].

The large inter-sample variation in S at the numeri-
cally accessible system sizes suggests that the numerically
extracted finite-size scaling exponents will obey the Har-
ris criterion [38, 89], in sharp contrast to the numerical
exponents reported for unconstrained models [35, 37, 90].
More broadly, as the non-thermal behavior for small Wz

results from weak-x fields, the constrained Ising model
provides a unique setting to isolate the effects of rare re-
gions. Since Eq. (1) describes Rydberg-blockaded chains,
quenches and other dynamical experiments [12] in the
presence of disorder should access these rare region ef-
fects in energy transport and in entanglement growth.
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[33] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. B

90, 174302 (2014).

[34] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys.
Rev. B 87, 134202 (2013).

[35] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Phys.
Rev. Lett. 113, 107204 (2014).

[36] C. Laumann, A. Pal, and A. Scardicchio, Phys. Rev. Lett.
113, 200405 (2014).

[37] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B
91, 081103 (2015).

[38] A. Chandran, C. R. Laumann, and V. Oganesyan, ArXiv
e-prints (2015), 1509.04285.

[39] B. Tang, D. Iyer, and M. Rigol, Phys. Rev. B 91, 161109
(2015).

[40] V. P. Michal, B. L. Altshuler, and G. V. Shlyapnikov,
Phys. Rev. Lett. 113, 045304 (2014).

[41] K. Agarwal, S. Gopalakrishnan, M. Knap, M. Müller,
and E. Demler, Phys. Rev. Lett. 114, 160401 (2015).

[42] R. Vasseur, S. A. Parameswaran, and J. E. Moore, Phys.
Rev. B 91, 140202 (2015).

[43] R. Singh, J. H. Bardarson, and F. Pollmann, New Journal
of Physics 18, 023046 (2016).

[44] Y.-Z. You, X.-L. Qi, and C. Xu, Phys. Rev. B 93, 104205
(2016).

[45] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Phys.
Rev. X 5, 031033 (2015).

[46] R. Nandkishore and D. A. Huse, Annual Review of Con-
densed Matter Physics 6, 15 (2015).

[47] E. Altman and R. Vosk, Annual Review of Condensed
Matter Physics 6, 383 (2015).

[48] D. A. Huse and V. Oganesyan, ArXiv e-prints (2013),
1305.4915.
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Rev. Lett. 79, 5130 (1997).

[86] X. Yu, D. J. Luitz, and B. K. Clark, Phys. Rev. B 94,
184202 (2016).

[87] P. T. Dumitrescu, R. Vasseur, and A. C. Potter, ArXiv
e-prints (2017), 1701.04827.

[88] P. Ponte, C. R. Laumann, D. A. Huse, and A. Chandran,
ArXiv e-prints (2017), 1707.00004.

[89] J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,
Phys. Rev. Lett. 57, 2999 (1986).

[90] V. Khemani, D. N. Sheng, and D. A. Huse, ArXiv e-
prints (2017), 1702.03932.

[91] B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides,
and H. B. Shore, Phys. Rev. B 47, 11487 (1993).

[92] R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401
(2001).

[93] C. R. Laumann, R. Moessner, A. Scardicchio, and S. L.
Sondhi, Phys. Rev. Lett. 109, 030502 (2012).

[94] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61,
2376 (1988).

[95] R. Moessner and K. S. Raman, ArXiv e-prints (2008),
0809.3051.

[96] For our model SP ≡ log2(dim(ρA)) − 1/(2 ln 2) ≡
log(FN/2+2) − 1/(2 ln 2). Numerically we find that the

entropy of a random state in H̃ is ST ≈ SP − 0.06.


