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When metals plastically deform, the density of line defects called dislocations increases and the
microstructure is continuously refined, leading to the strain hardening behavior. Using discrete
dislocation dynamics simulations, we demonstrate the fundamental role of junction formation in
connecting dislocation microstructure evolution and strain hardening in face-centered cubic (FCC)
Cu. The dislocation network formed consists of line segments whose lengths closely follow an
exponential distribution. This exponential distribution is a consequence of junction formation, which
can be modeled as a one-dimensional Poisson process. According to the exponential distribution,
two non-dimensional parameters control microstructure evolution, with the hardening rate dictated
by the rate of stable junction formation. Among the types of junctions in FCC crystals, we find
that glissile junctions make the dominant contribution to strain hardening.

The flow stress required to continuously deform a crys-
tal generally increases with the amount of plastic strain;
this phenomenon is called strain hardening. The strain
hardening rate is one of the most prominent features of
the stress-strain curves of materials, and is critical for
the stability of plastic flow against local necking [1]. A
quantitative understanding of the strain hardening rate
in terms of fundamental physical mechanisms has at-
tracted significant interest not only as a challenging prob-
lem in non-equilibrium statistical mechanics [2–8], but
also for its importance in advanced manufacturing pro-
cesses [9] (e.g., forming and cold working) and novel alloy
design [10].

At temperatures below about one-third of the melt-
ing point of a metal, movement of dislocations—line de-
fects in the crystal lattice—is the dominant mechanism
for plastic deformation. It is widely believed that under
such conditions, the strain hardening behavior of pure,
single crystalline metals is entirely governed by the dy-
namics of dislocations, which multiply and form intricate
network structures during plastic deformation. Through
extensive theoretical and experimental research over the
last five decades [11], a great deal is now known regarding
the dislocation processes and strain hardening behaviors
of single crystals. The mobility of individual disloca-
tions and reactions between them are well understood
through elasticity theory [7, 12–16] and atomistic sim-
ulations [17–20]. Dislocation microstructures have been
extensively characterized using transmission electron mi-
croscopy [21–23]. The stress-strain curves for single crys-
tals have also been measured under a wide range of tem-
peratures and loading directions [24]. However, a quan-
titative connection between the key microstructural fea-
tures of the dislocation network and the strain hardening
rate of a metal is still lacking.

In principle, the missing connection can be provided
by large-scale discrete dislocation dynamics (DDD) sim-
ulations, which follow the evolution of the dislocation
network and predict the stress-strain curve of the crys-

tal. Using the ParaDiS program [25, 26] and a recently
developed time integrator [27], we can now predict the
stress-strain curves of single crystal Cu along the [0 0 1]
direction to a sufficient amount of strain so that the strain
hardening rate can be obtained consistently. Our DDD
simulations reveal an important microstructural feature
of the dislocation network: the lengths of dislocation line
segments (between junction nodes) closely obey an ex-
ponential distribution. This exponential distribution is
parameterized by the dislocation density ρ, and a dimen-
sionless parameter φ ≡ N2/ρ3, where N is total num-
ber of the dislocation line segments per unit volume. We
show that the exponential length distribution is the result
of a one-dimensional Poisson process, where a dislocation
line segment is randomly subdivided into two shorter seg-
ments when a stable junction is formed. Furthermore,
junction formation is found to be essential for dislocation
multiplication and strain hardening, because the strain
hardening rate vanishes when junction formation is dis-
abled in DDD simulations. Based on the exponential
distribution of line lengths, a quantitative connection is
established between the junction formation rate and the
strain hardening rate. And, by selectively disabling dif-
ferent junction types in DDD simulations, we find that
glissile junctions make the dominant contribution to the
strain hardening rate.

Our DDD simulation cell is a cube with a 15µm length
subjected to periodic boundary conditions in all three di-
rections. The initial condition consists of straight dislo-
cation lines on {1 1 1} planes with 1

2 〈0 1 1〉 Burgers vec-
tors. These dislocations are randomly chosen to have
edge, screw, or mixed (60◦) character, and are confined
to glide on {1 1 1} planes (no cross-slip allowed). A lin-
ear mobility is applied to all mobile dislocations with a
drag coefficient of B = 15.6µPa·s. The elastic interac-
tions between dislocations are parameterized by the shear
modulus µ = 54.6 GPa and Poisson’s ratio ν = 0.324 of
Cu. The dislocation structure is first relaxed to an equi-
librium state, giving the initial density ρ0, and is then
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FIG. 1. Shear stress-strain curves of single crystalline Cu
deformed along [0 0 1] axis. Thick curves are predictions by
DDD simulations for an initial dislocation density ρ0 = 0.7×
1012 m−2 at two different strain rates ε̇. The thin solid line
is extracted from experimental data [28] at strain rate of ε̇ =
3 × 10−3 s−1. The dashed lines are translated from the thin
solid line to show the consistency of the strain hardening rate
between simulations and experiments.

subjected to a constant strain rate ε̇ along [0 0 1]. Un-
der this high-symmetry loading condition, eight of the
twelve slip systems have the same resolved shear stress
with Schmid factor S ≈ 0.41, and the remaining four
have a Schmid factor of zero.

Fig. 1 shows the shear stress-strain curves predicted by
DDD simulations under two strain rates, where the shear
stress τ and strain γ are related to normal stress σ and
strain ε by τ = Sσ and γ = ε/S. Three independent sim-
ulations with randomly generated initial conditions are
performed for each strain rate and initial density to in-
sure robustness of the results (additional results with dif-
ferent initial densities are in the Supporting Information
(SI)). As shown in Fig. 1, despite the fact that our strain
rates are quite high relative to quasi-static experiments,
the strain hardening rate is largely consistent with the
Stage II hardening rate of Θ ≡ dτ/dγ ∼ 320±50 MPa ob-
served by Takeuchi [28] in single crystalline copper, and
the commonly cited rules-of-thumb of µ/200 to µ/300
(180-270 MPa), where µ is the shear modulus, for FCC
metals in Stage II [6, 21]. The consistency in the slope
of the stress-strain curves in Fig. 1 shows that the strain
hardening rate is less sensitive to the applied strain rate
than the yield stress.

The success of DDD simulations in capturing the strain
hardening rate of single crystals enables us to answer the
fundamental question: which microstructural features in
the dislocation network are responsible for the strain
hardening behavior? An obvious candidate is the total

dislocation density ρ. In fact, the well-known Taylor re-
lation states that the flow stress τ satisfies the following
relation,

τ = αµ b
√
ρ (1)

where b is the magnitude of the Burgers vector, and α
is a constant experimentally determined to be between
0.5 and 1 [5]. We find that the Taylor relation is obeyed
during hardening in our DDD simulations with α ≈ 0.5
(see SI).

The Taylor relation has often been interpreted by con-
sidering the critical stress needed to free (or activate)
dislocations whose end points are pinned (e.g., by junc-
tions) [29], by assuming that the average segment length
scales with ρ−1/2. Fig. 2(a) shows a typical dislocation
microstructure from our DDD simulations. The dislo-
cation line network is quite complex and the segment
lengths are clearly not all the same as is often assumed
in simple models. Given the fundamental connection be-
tween dislocation line length and flow stress, the dis-
tribution of line lengths should be of primary impor-
tance when characterizing the statistical properties of
dislocation networks, although in the past it has not re-
ceived much attention. In this work, we have analyzed
the length of all dislocation lines connecting one pinning
point (e.g., nodes terminating at junctions) to another,
which has been referred to as the link length [30]. We
have performed such an analysis both on instantaneous
snapshots from DDD simulations, as well as on configu-
rations after the snapshots are relaxed under zero stress
(similar to postmortem analysis in experiments).

Fig. 2(b) shows the distribution of link lengths l nor-
malized by the average length l from a typical relaxed
dislocation structure at γ = 0.87% shear strain. The
histogram shows that the probability distribution of link
lengths can be well described by an exponential distribu-
tion,

p(l) = (1/l) e−l/l. (2)

Other researchers have found that dislocation networks
observed in molecular dynamics simulations of strained
nanopillars exhibit a similar exponential distribution [31].
For the distribution shown in Fig. 2(b), we find that for
link lengths less than 2.5 l (which comprises 91% of the
links), the deviation from the exponential distribution in
a quantile-quantile (Q-Q) plot is less than 5% (see SI).

To discuss the nature of the exponential length distri-
bution and its consequence on strain hardening, it is use-
ful to introduce a length density function, n(l) ≡ N p(l),
where n(l) dl is the number of links per unit volume
whose length is between l and l+dl. N is the total num-
ber of links per unit volume. N and ρ are the zeroth and
first moments of the density function n(l), respectively.
If we define a non-dimensional parameter φ ≡ N2/ρ3,
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FIG. 2. (a) Snapshot from a DDD simulation at γ = 0.87%
shear strain, with ε̇ = 103 s−1 and ρ0 = 0.7 × 1012 m−2.
(b) Dislocation link length distribution n(L) for the structure
shown in (a) (after being relaxed to zero stress) compared to
Eq. (3).

then the average link length is l = ρ/N = 1/
√
φ ρ, and

Eq. (2) is equivalent to

n(l) = φ ρ2 e−
√
φ ρ l. (3)

Eq. (3) means that the dislocation length distribution
is completely determined by the total density ρ and the
non-dimensional parameter φ. We find that φ gradually
increases during the course of the simulations (see Fig. 3).

The exponential form of n(l) can be explained by con-
sidering a simple model for the junction formation pro-
cess. The degrees of freedom of the model are the lengths
l of N dislocation links in a unit volume. When a link
of length l participates in a junction formation event, we
assume that this link splits into two links of lengths l1
and l2 = l− l1, where l1 is uniformly distributed in (0, l).
If we assume that the probability rate for splitting a link
is proportional to its length l, then numerical simula-
tions show that the distribution of link lengths quickly

goes to an exponential distribution (see SI). Therefore,
we attribute the origin of the link length distribution to
the observation that the probability of a link of length
l experiencing a collision is proportional to l, rendering
junction formation a one-dimensional Poisson point pro-
cess from which an exponential distribution results [32].
In other words, the probability of finding a link of length
l having not yet suffered a collision is exponentially small

(∼ e−l/l).
In the following, we show that focusing on the dislo-

cation link length distribution function, n(l), allows us
to reveal deeper connections between the dislocation mi-
crostructure and the strain hardening rate that have not
been appreciated before. We shall assume that n(l) (in
single crystal Cu under [0 0 1] loading) always follows the
exponential distribution of Eq. (3), which is parameter-
ized by the dislocation density ρ and a non-dimensional
parameter φ. Furthermore, we shall assume that the dis-
location microstructure (under [0 0 1] loading) is uniquely
determined by the two parameters ρ and φ. Given these
assumptions, we will be able to establish a quantitative
link between the junction formation rate and the strain
hardening rate, as shown below.

Consistent with the assumption that the probability
rate of a line splitting is proportional to its length l, we
assume that the overall collision rate between disloca-
tions on different slip systems is R = f ρ2 v, where f is
the ratio of the forest density ρf over the total density ρ,
and the mean spacing between pinning points on dislo-
cation slip planes is λ ≡ 1/

√
f ρ. Our DDD simulations

show that f ≈ 0.45 and remains a constant with strain
(see SI). The difference between φ (increasing with strain)
and f (constant) means that the average link length l is
different from λ. v is the average dislocation velocity re-
lated to the strain rate γ̇ through the Orowan equation,
γ̇ = ρ b v. Since not all collisions result in the formation
of a stable junction, we introduce a non-dimensional pa-
rameter β, which is the fraction of collisions that leads to
stable junction formation, so that the junction formation
rate is βR. We assume that each time a stable junction
forms, two dislocation links become 4 links, so that the
rate at which the number of links increases is

Ṅ = 2β f ρ2 v =
2β f ρ

b
γ̇. (4)

Assuming that the exponential distribution is always
maintained, it follows that N = φ1/2ρ3/2 and Ṅ =
3
2φ

1/2ρ1/2ρ̇+ 1
2φ
−1/2ρ3/2φ̇, leading to the dislocation mul-

tiplication rate

ρ̇ =
4β f γ̇

3
√
φ b

√
ρ− φ̇

3φ
ρ. (5)

Interestingly, the dislocation multiplication rate expres-
sion in Eq. (5) is consistent with the Kocks-Mecking
model [6], ρ̇ = K1

√
ρ − K2ρ, with K1 = 4 β f γ̇

3
√
φ b

and
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FIG. 3. φ-β values during DDD simulations at strain rates
ε̇ = 103 s−1 and 102 s−1. Dashed lines are guide to the eye for
the range of φ-β values. The ∗ symbol indicates the critical
value φc, beyond which Eq. (7) becomes valid.

K2 = φ̇
3φ . Here we see that the Kocks-Mecking form

appears as a natural consequence of the exponential dis-
tribution of link lengths, although the physical origin and
temperature dependence of Eq. (5) is different from the
original Kocks-Mecking model. Combining Eq. (5) with
the Taylor relation, Eq. (1), the strain hardening rate is,

Θ =
τ̇

γ̇
=

1

3
αµ

(
2β f√
φ
−
b
√
ρ

2φ

φ̇

γ̇

)
. (6)

Eq. (6) shows that the strain hardening rate Θ is deter-
mined by the junction formation rate β, as well as φ̇/γ̇,
the rate at which parameter φ changes with strain γ.

We can analyze the different contributions to the strain
hardening rate Θ in our DDD simulations in light of
Eq. (6). Specifically, we compute the dislocation density
ρ and link number density N from a series of DDD sim-
ulation snapshots, and extract the non-dimensional pa-
rameters φ and β using φ = N2/ρ3 and β = b Ṅ/(2 f ρ γ̇).
Given the assumption that the dislocation microstruc-
ture always obeys the exponential distribution Eq. (3)
(for Cu in [0 0 1] loading) which is completely governed
by parameters ρ and φ, we expect that all properties of
the network should be functions of ρ and φ. The junc-
tion formation rate β is just a property of the dislocation
network, and should therefore be a function of ρ and φ.
Hence, for simulations starting from the same initial dis-
location density ρ0 and at the same strain rate γ̇, we
expect β (on average) to be a function of φ.

Fig. 3 shows the evolution of dislocation microstruc-
ture in the non-dimensional space of β-φ. It is ob-
served that during the course of the simulation, φ gradu-
ally increases from about 0.4 to as high as about 1.6,
accompanied by a decrease in β. This indicates that

during this early period of strain hardening, the dislo-
cation microstructure does not evolve in a self-similar
manner—not only does the density ρ increase, but the
non-dimensional parameter φ also increases. However,
the rate of increase of φ slows down with increasing
strain, so that if φ exceeds a critical value φc, which oc-
curs at γ ≈ 1%, φ̇/γ̇ becomes so small that the second
term in Eq. (6) becomes negligible compared to the first
term (see SI). In this case, the strain hardening rate can
be approximated as

Θ ≈ 2αβ f

3
√
φ
µ. (φ ≥ φc) (7)

Eqs. (6-7) motivate the hypothesis that the net junc-
tion formation fraction β is the controlling factor of the
dislocation multiplication rate and strain hardening rate.
In other words, if the dislocations were not allowed to
form more junctions, the network would not have the ca-
pacity to store more dislocations and there would not be
any strain hardening. In order to test this hypothesis,
we employed specialized DDD simulations in which junc-
tion formation events are suppressed. With our approach
(see SI), we are able to suppress selected types of junc-
tions, enabling us to assess the role of each junction type
(collinear, glissile, Hirth, and Lomer [33, 34]). This illus-
trates the power of computational tools such as DDD in
answering fundamental questions by examining scenarios
not accessible by experiments.

Fig. 4 shows the stress-strain curves obtained with
these specialized simulations. When all junctions are
suppressed, the hardening rate (at ε̇ = 103 s−1) is greatly
reduced from 329 to 47 MPa. We believe the strain hard-
ening rate does not completely vanish in this case be-
cause our modifications do not completely eliminate junc-
tion formation events. When only one type of junction
is allowed to form, the hardening rate is approximately
225, 117, 103, and 46 MPa for glissile, collinear, Lomer,
and Hirth junctions, respectively. This result indicates
that glissile junctions make the dominant contribution
to strain hardening. This finding is interesting because
the collinear junction is the strongest among the four
junctions [14]. We believe that glissile junctions make
the largest contribution because they are relatively sta-
ble [15] and are the most likely to form, with four forest
interactions per slip system (compared to two, two, and
one for Lomer, Hirth, and collinear, respectively; see SI
for further elaboration).

Our DDD simulations have shown that the disloca-
tion link lengths satisfy an exponential distribution, that
junction formation is a necessity for strain hardening, and
that glissile junctions make the dominant contribution to
the strain hardening rate in [0 0 1] loading of Cu. The ex-
ponential distribution is explained by a simple model for
the effect of junction formation on the population of dis-
location lines. Analysis using the exponential length dis-
tribution reveals a fundamental connection between the
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FIG. 4. Shear stress-strain curves and (inset) strain hardening
rates for specialized DDD simulations with selected types of
junctions suppressed; ρ0 = 0.7 × 1012 m−2 and ε̇ = 103 s−1.
The legend shows the type of junctions that are allowed to
form during the simulation.

junction formation rate (β) and the strain hardening rate
(Θ). We hope this work brings attention to the disloca-
tion link length distribution as an important property of
the dislocation microstructure, so that it may be incorpo-
rated in future coarse-grained field theories of dislocation
dynamics and dislocation-based crystal plasticity models.
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