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We theoretically study an ultra-cold gas of spin-1 polar bosons in a one dimensional continuum
which are subject to linear and quadratic Zeeman fields and a Raman induced spin-orbit coupling.
Concentrating on the regime in which the background fields can be treated perturbatively we ana-
lytically solve the model in its low-energy sector, i.e. we characterize the relevant phases and the
quantum phase transitions between them. Depending on the sign of the effective quadratic Zeeman
field ε, two superfluid phases with distinct nematic order appear. In addition, we uncover a spin-
disordered superfluid phase at strong coupling. We employ a combination of renormalization group
calculations and duality transformations to access the nature of the phase transitions. At ε = 0,
a line of spin-charge separated pairs of Luttinger liquids divides the two nematic phases and the
transition to the spin disordered state at strong coupling is of the Berezinskii-Kosterlitz-Thouless
type. In contrast, at ε 6= 0, the quantum critical theory separating nematic and strong coupling spin
disordered phases contains a Luttinger liquid in the charge sector that is coupled to a Majorana
fermion in the spin sector (i.e. the critical theory at finite ε maps to a quantum critical Ising model
that is coupled to the charge Luttinger liquid). Due to an emergent Lorentz symmetry, both have
the same, logarithmically diverging velocity. We discuss the experimental signatures of our findings
that are relevant to ongoing experiments in ultra-cold atomic gases of 23Na.

The interplay of internal quantum states and strong
interactions can lead to the emergence of new quantum
phases of matter and criticality. For example, while
spin-1/2 quantum magnets can only sustain conventional
magnetic order, larger spin systems allow for order in
higher angular momentum channels involving multipole
moments in large spin systems [1–3]. Spinful ultra-cold
atomic gases are a particularly fruitful setting to study
magnetic phenomena with spins S > 1/2, where opti-
cal traps allow for the cooling and manipulation of all
of the internal hyperfine states of the atom, thus re-
alizing atomic gases with a large spin (e.g. 52Cr with
S = 3) [4, 5]. This can lead to superfluids with non-
trivial magnetic structure that spontaneously break both
charge conservation and spin rotation symmetries [6, 7].

Ultra cold spin-1 bosons are an ideal system to study
nontrivial magnetism beyond conventional vector mag-
netic order parameters. A pivotal microscopic ingredi-
ent is the spin dependent interaction g2 which can either
be ferromagnetic (g2 < 0) or polar (g2 > 0) [5] and
leads to different ground states displaying either non-
zero or zero spin expectation value, respectively [6, 7].
In the following, we concentrate on the polar case which
is readily realized with 23Na gases [5]. The condensate
wavefunction can be written as a three-component spinor
ΨMF =

√
ρeiϑn̂ where the superfluid phase ϑ and the unit

vector n̂ parametrize the ground state manifold. The po-
lar condensate has nematic order signaled by non-zero
eigenvalues of a rank-2 tensor order parameter [6, 7]. A
quadratic Zeeman field [8] lifts the degeneracy and the
ground state spinor is given by either n̂ = (0, 1, 0)T or
a planar state n̂ = (eiϕ, 0, e−iϕ)T depending on the sign
of the quadratic Zeeman field [4]. In recent experiments,
it has been demonstrated that it is possible to observe
the non-trivial nematic order in 23Na [9] and that the
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FIG. 1. a) Phase diagram in the plane spanned by effective
quadratic Zeeman field ε = q + Θ2/(2m) and spin-spin inter-
action g2. For explanations on the two nematic phases and
the spin liquid see the main text. The non-universal position
gc of the BKT transition is marked by a star. b) Difference of
the only non-zero nematicity tensor components 〈Nzz−Nyy〉,
note that it is odd in ε and 〈Nyy+Nzz〉 = 1. The characteris-

tic power law is non-universal |ε|1/(2Ks−1), Ks ≥ 2 for g2 ≤ gc,
and linear for g2 > gc. c) The mz = 0 component of the BEC

wave function (the order paramater) scales as ε(1/4)/(2Ks−1)

for g2 ≤ gc and (ε− εI)1/8 for g2 > gc.

quadratic Zeeman effect can be used to drive nematic
phase transitions [10, 11]. Moreover, the nematic planar
phase is interesting due to the different types of topolog-
ical defects that can result from the winding of the phase
ϑ→ ϑ+ 2π or the combined operation of a half -winding
of the phase ϑ → ϑ + π and an inversion of the spinor
n̂ → −n̂ that leave ΨMF unchanged [12–14], which have
recently been observed in 23Na [15].

With the latest development of artificial gauge fields,
it is now possible to couple the internal spin states of
the atom to their momentum using counter-propogating
Raman lasers, which induces an effective spin orbit cou-
pling (SOC) [16]. SOC’ed quantum gases can now be
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realized in spinor bosons [17–21] or spinful fermions [22]
with either a one or two dimensional SOC [23–26]. In
bosonic gases this gives rise to “striped” superfluids [27–
36] that condense at the degenerate momenta dictated
by the spin orbit wave vector. While the phase diagram
is now reasonably well understood, SOC’ed, polar, spin-1
gases offer an exciting platform to study the competition
between different types of nematic order, and hold great
promise for intriguing forms of quantum criticality. A
majority of the theoretical [28, 32–35, 37, 38] and ex-
perimental [17–21] work has focused on quantum phase
transitions (QPTs) that are driven by the strength of the
Raman field and are accessible in both pseudospin-1/2
and spin-1 bosons. Interestingly, for polar spin-1 bosons,
the phenomena and nematic QPTs that can be evoked
by SOC goes beyond transverse field induced transitions,
and remains largely unexplored apart from mean field
(MF) [35, 39] and variational solutions [33, 36, 40]. Our
work aims to fill this gap by developing a field theory
description of nematic QPTs.

One major difficulty in theoretically capturing the
interplay between non-perturbative topological defects,
SOC, and nematic order is that it requires a strong cou-
pling solution beyond any MF like description. Thus one
of the most felicitous realms to study SOC’ed polar spinor
bosons are one-dimensional (1D) systems, which repre-
sents a common setup for ultra cold atom experiments.
This is due to the existence of strong analytical tools
that allow for asymptotically exact low-energy solutions
that take into account both the inherent strong coupling
nature of 1D and topological defects [41–43]. The effec-
tive field theory of polar spin-1 bosons in the absence of a
SOC is described by a spin-charge separated Lagrangian,
the charge is described by a gapless Luttinger liquid (LL)
and the spin sector is given by a 1D non-linear sigma
model (NLσM) [41, 43]. A SOC directly couples the spin
and charge degrees of freedom and therefore it is in no
way obvious if spin-charge separation can still persist in
SOC’ed gases.

Summary of results and experimental predictions. We
consider a gas of 1D polar spinor bosons in the presence
of a SOC (wave vector Θ) and a linear (quadratic) Zee-
man field hp (q). We treat the strength of background
fields perturbatively and derive the effective low energy
field theory that describes a LL coupled to a NLσM in
the presence of anisotropic mass terms. We solve this ef-
fective theory in the low energy limit and determine the
phase diagram of the model, see Fig. 1. We uncover three
distinct superfluid phases: at weak coupling, two differ-
ent nematic phases depending on the sign of the effective
quadratic Zeeman field ε = q+Θ2/(2m) and a spin liquid
phase at strong coupling. Furthermore, we determine the
nature of the QPTs between those phases, all of which are
continuous. The critical state between the two nematic
phases at weak coupling is a pair of spin-charge sepa-
rated Luttinger liquids. In contrast, the transition from

either nematic phase to the spin liquid is in the 1+1D
Ising universality class with an exotic, emergent Lorentz
symmetry characterized by equal, logarithmically diver-
gent velocities in the spin and charge sector. Interest-
ingly, a very similar QPT was discussed in the physically
unrelated context of Cooper pairing near Lifshitz transi-
tions and in topological superconductors [44–46]. Finally,
Ising and LL QPT lines meet at a Berezinskii-Kosterlitz-
Thouless (BKT) critical point.

The hallmarks of our theory are as follows: (i) The de-
scribed phases and fluctuation induced continuous QPTs.
We emphasize, that mean field (MF) and variational the-
ories predict a first order transition at ε = 0 and miss
the spin liquid phase completely. (ii) The order pa-
rameter of the QPTs are the spin components of the
condensate wave function, see Fig. 1 c). (iii) An ex-
perimentally accessible observable is the nematic ten-
sor Nab = δab − {Sa, Sb}/2, see Fig. 1 b). We pre-
dict a characteristic power law behavior of Nyy, Nzz with
non-universal exponents. This emblematic feature of LL
physics is out of reach of MF theory. For parameters
in typical ultra-cold atom experiments with quasi-1D
tubes of atoms at nano-Kelvin temperatures we estimate
Ks ∼ O(10), and a system size and thermal length which
exceed the correlation length [49]. Thus, these power-
laws should be experimentally detectable. (iv) The effect
of SOC is twofold: First, the condensate wave function in
the nematic ε < 0 phase is heavily modulating in space.
Second, SOC strongly affects the position of QPTs. How-
ever, somewhat strikingly, the universal critical behaviors
are independent of the SOC. (v) Finally, the emergent
Lorentz symmetry at the Ising transitions is, at least in
principle, accessible via separate measurement of excita-
tion spectra in charge and spin sectors [47, 48]. In the
remainder we present the theoretical framework leading
to these results and predictions.

Model : Continuum spin-1 bosons with mass m
that are perturbed by a background helical magne-
tization and a constant linear Zeeman field ~h(x) =
h(cos(Θx),− sin(Θx), p)T as well as a quadratic Zeeman
coupling q can be described by the normal ordered Hamil-
tonian density H = ∂xΨ†∂xΨ/(2m) +H2 +H4, where

H2 = qΨ†S2
zΨ + Ψ†~h(x) · ~SΨ, (1a)

H4 =
g0

2
: (Ψ†Ψ)2 : +

g2

2
: (Ψ†~SΨ)2 : . (1b)

We analyze the polar case g0 > g2 > 0 (g0 ∼ 32g2 in
23Na [5]) in the semiclassical limit in which the conden-
sate density ρ0 = µ/g0 parametrically exceeds the inverse
coherence length 1/ξc =

√
2mµ. Here, µ is the chemical

potential and we set ~ = kB = 1 throughout.
The bosonic field operators Ψ,Ψ† are three-spinors and

in the remainder we choose the adjoint representation
of SU(2) as a basis of spin-1 operators (Sa)bc = −iεabc
with a, b, c ∈ {x, y, z}. The quartic term can be recast
into the form H4 = (g0 + g2)/2 : (Ψ†Ψ)2 : −g2/2 :
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Ψ†Ψ∗

] [
ΨTΨ

]
: so that the [U(1) × O(3)]/Z2 symme-

try of the unperturbed action becomes manifest. Eq. (1)
describes the quantum fluid in the lab frame, the frame
co-rotating with the Raman field, can be accessed by
Ψ → eiΘxSzΨ. In this frame, Eq. (1) retains its struc-

ture, except for ~h→ h(1, 0, p)T and ∂x → ∂x+iΘSz (this
yields q → ε = q + Θ2/2m).

In order to solve Eq. (1) in its low-energy sector, we
perform a sequence of coarse graining steps which are
motivated by the assumption of the hierarchy of length
scales presented in Fig. 2. The meaning of each of those
scales will be explained at the appropriate position of
the main text. Since the dispersion relation of collec-
tive modes is linear, see Eq. (2) below, the conversion to
equivalent time (energy) scales follows trivially.

Effective low-energy theory. As a first step towards
the asymptotic solution of Eq. (1) we derive the effective
long-wavelength Matsubara field theory [41, 43], for de-
tails see Ref. [49]. It is convenient to choose an Euler
angle parametrization Ψ =

√
ρeiϑOeiα4λ4eiα6λ6 êz, with

λi being Gell-Mann matrices. This representation sep-
arates the Goldstone modes eiϑ, O = eiα7λ7eiα5λ5 living
on the manifold [U(1) × O(3)/O(2)]/Z2 from the mas-
sive longitudinal modes α4 and α6 from the outset. This
representation of the complex unit vector Ψ/

√
ρ provides

a regular Jacobian leading to the NLσM measure for the
Goldstone field n̂ ≡ Oêz ∈ S2. While constant ϑ and O
fields are zero modes of H − H2, Eqs. (1a),(1b) ensure
that the longitudinal modes take the saddle point values
ρMF = ρ0 − qn̂S2

z n̂/g0, α4,MF = −iêzOT~h · ~SOêx/[2ρ0g2]

and α6,MF = −iêzOT~h · ~SOêy/[2ρ0g2], which are pertur-
bative in hg0/(µg2) but non-perturbative in q. Fluctua-
tions around the saddle point ∆ρ (∆α4,6) decay on the

length scale ξc (ξs =
√
g0/g2ξc). To access the physics

at longer scales, we perform the Gaussian integration of
massive modes assuming that O and ϑ are slow. We
switch to the co-rotating frame and obtain the effective
low-energy Lagrangian L = L0 + L1 + L2,

L0 = ∆εn̂S
2
z n̂−∆hn̂(Sx + pSz)

2n̂, (2a)

L1 = −iϑ̇λεn̂S2
z n̂+ λh ˙̂nSxn̂+ iλΘn̂

′Szn̂, (2b)

L2 =
Kc

2πvc

[
ϑ̇2 + v2

cϑ
′2
]

+
Ks

2πvs

[
| ˙̂n|2 + v2

s |n̂′|2
]
. (2c)

The kinetic part of the action, Eq. (2c), which we denote
as L2 = LLL[ϑ] + LNLσM[n̂], contains bare coupling con-
stants Kc,s =

√
2πρ0ξc,s and velocities vc =

√
ρ0g0/m

and vs =
√
ρ0g2/m. We omitted anisotropic corrections

to kinetic terms due to q,Θ and h, because they are small
and will renormalize to zero quickly. In addition to the
known kinetic term L2, Eq. (2) contains symmetry break-
ing terms with no derivatives ∆ε = ρ0ε,∆h = h2/2g2

and one derivative λε = ε/g0, λh = h/g2, λΘ = Θρ0/m
which are the focus of this letter. In Ref. [49] we treat a
weak trapping frequency ω‖ � mg2

0 via the replacement
ρ0 → ρ0[1 − x2/l2trap]. We find that this introduces the

ξΔh
ξΔϵ Lξsξc

normal 
Bose 
liquid

spin: NLσM

1/ρ0 1/ϴ

charge: Luttinger liquid

lT ltrap

spin: sine-Gordon spin: gapped

FIG. 2. Length scales of the problem away from criticality.
The large superfluid density and the slow SOC pitch ρ0 �
1/ξc,s � Θ enable the controlled derivation of Eq. (2). The
perturbative inclusion of the effective fields |ε|, h� µ, implies
ξc,s � ξ∆h < ξ∆ε (the last inequality reflects the focus on
SOC). At each length scale ξc,s,∆h,∆ε , certain modes freeze
and an effective theory emerges.

largest finite length scale (ltrap =
√

2µ/mω2
‖) into the

problem, which is less restrictive then the presence of fi-
nite temperature (lT = vs/T ), and their combined effect
rounds out the observable critical properties (see Fig. 2).

Characterization of phases. We begin the asymptotic
solution of Eq. (2) by determining all phases and their
characteristics, see Fig. 1 a). Groundstates which are
also accessible to variational [33, 36, 40] and MF [35, 39]
treatments follow from the consideration of the poten-
tial term ∆εS

2
z − ∆h(Sx + pSz)

2 which independently
of p predicts a first order transition at ε = 0 [49]. For
p = 0 it has eigenvalues ∆ε,∆ε − ∆h,−∆h with eigen-
states êx, êy, êz, respectively (for p 6= 0 see [49]). At finite
h, the groundstate at ε > 0 (ε < 0) is ΨMF '

√
ρ0e

iϑ[êz+
hêy/(2g2ρ0)] (ΨMF '

√
ρMFe

iϑ[êy−hêz/(2g2ρ0)]), where
the finite h corrections stem from αMF

4,6 . This state is
denoted UN⊥ (UN‖ + XY spiral) because at MF level
it displays uniaxial nematic order 〈Nzz〉 = ρ0 + O(h2)
(〈Nyy〉 = ρ0 + O(h2)). Both states show weak magneti-
zation 〈Sx〉 = −h/g2. In the lab frame the magnetization
follows the helical magnetic field and for ε < 0 there is
a strong modulation of the superfluid wavefunction be-
cause bosons condense at finite momentum k = Θ pro-
ducing a stripe superfluid [49]. MF theory predicts a first
order transition at ε = 0: the ground state in the spin sec-
tor becomes degenerate and the order parameter 〈Nab〉
changes discontinuously. Finally, there is a third phase in
which the spin sector is quantum disordered, i.e. a spin
liquid [43]. This occurs when Ks → 0, a scenario that
is not captured by the bare parameters entering Eq. (2)
but can be reached upon RG transformations.

Characterization of phase transitions. Having identi-
fied the three phases of the problem, we now charac-
terize the nature of the QPTs between them. We first
discuss the RG flow close to the repulsive fixed point
Ks = ∞ at small ∆ε,h, λε,h,Θ. It is well known that
dKs/db = −1/2 +O (1/Ks,∆ε,h, λε,h,Θ) . As usual, b de-
notes the running logarithmic scale. The unperturbed
weak coupling theory suggests that the spin liquid is
approached at the length scale ξSL ∼ ξs exp(

√
2πρ0ξs).

However, the scaling dimensions of ∆ε,h, λε, and λh,Θ are
[2− 3/(2Ks)], [1− 3/(2Ks)], and [1− 1/(2Ks)], i.e. RG
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relevant at weak coupling. We define the length scales
ξ∆ε,h

self consistently as the scale when the couplings
∆ε,h(b) hit the running scale, by assumption ξ∆h

< ξ∆ε .
Beyond ξ∆h

the NLσM field is locked to the easy plane
n̂ = (0, sin(φ), cos(φ))T perpendicular to the background
magnetization realizing a spin-flop-like phase of itiner-
ant polar bosons. Following Fig. 2 a sine-Gordon theory
emerges. The coupling to the charge Luttinger liquid is
characterized by LEP = LLL[ϑ] + L̃,

L̃ =
Ks

2πvs

[
(φ̇)

2
+ v2

s(φ′)2
]

+
[
∆ε − iϑ̇λε

]
sin2(φ). (3)

All coupling constants in Eq. (3) are evaluated at the
scale ξ∆h

and we absorbed a factor of 1/(1 + p2) into
∆ε, λε. Note that, while Kc � 1 by assumption, Ks

is large only if ξ∆h
� ξSL and may be renormalized to

values of the order of unity or even smaller otherwise. In
terms of Eq. (3), the phase UN⊥ (UN‖ + XY spiral) is
characterized by 〈φ〉 = 0 mod π (〈φ〉 = π/2 mod π).

The fields entering Eq. (3) allow for various topological
defects: 2π phase slips in ϑ and φ fields as well as π
phase slips in ϑ accompanied with a ±π phase slip in φ
[12]. The scaling dimensions [13, 49, 50] of the associated
fugacities (Boltzmann weights) are (2 − Kc), (2 − Ks)
and [2 − (Kc + Ks)/4], respectively. Therefore, in the
given parameter regime (Kc � 1), only the fugacity y
of 2π phase slips in the spin field φ may be relevant.
We incorporate the associated operator into Eq. (3) and
derive [49] the weak coupling RG equations to second
order in λε,∆ε, y and to zeroth order in 1/Kc extending
the previously reported [51] results to the case of finite
λε:

d∆ε

db
= (2− 1/Ks)∆ε,

dy

db
= (2−Ks)y,

dKs

db
= ∆2

ε −K2
sy

2,
dλε
db

= (1− 1/Ks)λε,

d(Kc/vc)

db
=

λ2
ε

Ksvs
,

d(Kcvc)

db
=
dvs
db

= 0. (4)

Regularization dependent factors were absorbed into a
redefinition of λε,∆ε, y. Figure 3 a) displays the RG
flow in the plane (∆ε/y,Ks) and illustrates that (i) the
MF first order transition at ε = 0 for Ks ≥ 2 is ac-
tually continuous and described by a line of spin-charge
seperated LL critical points with enhanced symmetry, (ii)
the phase transition to the spin disordered phase is BKT
at ε = 0, and (iii) the quantum critical point at ε 6= 0
occurs at Ks = 1, but at strong coupling ∆ε, y → ∞.
At this fixed point, the spin charge coupling λε, which
is relevant (irrelevant) for Ks > 1 (Ks < 1), becomes
marginal. To determine the relevance of λε and the na-
ture of the strong coupling phase transition, Eq. (3) is
fermionized [49, 52] on the Ks = 1 hyperplane leading to
LEP,Ks=1 = LLL[ϑ] + LF

LF =
1

2
ηT
[
∂τ + vsp̂σz + (Mε + iλϑ̇)σyκz +Mvσy

]
η.(5)

b)a)
UN|| + 
XY spiral

UN⟂

spin liquid
y | |√

FIG. 3. Panel a): RG flow according to Eq. (4) in the plane
∆εy = 0.01 (color coding as in Fig. 1). The BKT critical
end point (Ising fixed point) is represented as a yellow star
(turquoise disc). The Ising point resides at ∆εy = ∞, and
controlled RG equations unveiling its emergent Lorentz sym-
metry, Eq. (6), are plotted in panel b).

The Majorana four spinor η is subject to masses Mε ∼
∆εξs,Mv ∼ yξs and coupled to the bosonic charge field
via λ ∼ λεξs. Pauli matrices in left-right (Nambu) space
are denoted σa (κa). At λ = 0, two Ising transitions
occur at Mε = ±Mv, corresponding to the turquoise
discs in Fig. 3 a). The effective theory, Eq. (5), at
the critical point corresponds to a single gapless Ma-
jorana mode coupled to a gapless boson by a Lorentz
symmetry breaking term. This effective theory is re-
lated to the problem studied in Refs. [44–46] by means
of a Lorentz boost (vsτ, x) → (x,−vsτ) and an ana-
lytical continuation λ → iλ. In that case, an attrac-
tive weak coupling fixed point λ → 0 with emergent
Lorentz symmetry and vanishing velocity vc = vs → 0
was uncovered along with a putative phase separated re-
gion at strong coupling. Returning to our theory, it is
useful to present the one-loop RG equations in terms of
G = |λ|/

√
Kc, u = vc/vs, v̄ =

√
vcvs

dG

db
=
uG3

8

(1− u)(3 + u)

(1 + u)2
,

du

db
= −u

2G2

4

(1− u)2

(1 + u)2
,

dv̄

db
=
uv̄G2

8

10u− u2 − 1

(1 + u)2
,

dKc

db
=
uG2

4
Kc. (6)

The mass has scaling dimension 1 +
uG2(u+ 1/2)/(1 + u)2. Due to the imaginary cou-
pling in our model, the flow is reversed as compared
to Refs. [44–46], hence v̄ increases near u = 1. The
first two RG equations in Eq. (6) decouple and are
plotted in Fig. 3, b). The assumption g0 > g2 implies
starting values vc > vs, therefore the effective theory (5)
resides in the basin of attraction of the weak coupling
fixed point (λ, vc/vs) = (0, 1). By consequence the
critical theory separating the spin disordered from the
nematic phases at finite |ε| is a theory with central
charge c = 3/2, emergent Lorentz symmetry vc = vs,
and logarithmically divergent velocity.

This concludes the derivation of the quantum critical
theories. The zero temperature scaling of the order pa-
rameter and nematic tensor, Fig. 1, is weakly rounded at
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finite temperature in the center of a harmonic trapping
potential and obtained via a semiclassical evaluation us-
ing renormalized coupling constants [49]. In particular,
the semiclassically expected first order jump is washed
out by the strong quantum fluctuations at ε = 0 which
corroborates the significance of the quantum field theo-
retical analysis. It will be interesting to study the pre-
dicted QPT numerically using the density matrix renor-
malization group to solve the SOC spin-1 Bose-Hubbard
model [34]. Despite the SOC removing any spin con-
serving quantum numbers [37], we expect a numerical
solution remains tractable in the superfluid regime pro-
vided that the truncation of the bosonic Hilbert space is
treated carefully [38].
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[50] F. Krüger and S. Scheidl, Physical review letters 89,

095701 (2002).
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