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To establish a unified framework for studying both discrete and continuous coupling distributions,
we introduce the binomial spin glass, a class of models where the couplings are sums of m identically
distributed Bernoulli random variables. In the continuum limit m → ∞, the class reduces to one
with Gaussian couplings, while m = 1 corresponds to the ±J spin glass. We demonstrate that
for short-range Ising models on d-dimensional hypercubic lattices the ground-state entropy density
for N spins is bounded from above by (

√
d/2m + 1/N) ln 2, and further show that the actual

entropies follow the scaling behavior implied by this bound. We thus uncover a fundamental non-
commutativity of the thermodynamic and continuous coupling limits that leads to the presence or
absence of degeneracies depending on the precise way the limits are taken. Exact calculations of
defect energies reveal a crossover length scale L∗(m) ∼ Lκ below which the binomial spin glass
is indistinguishable from the Gaussian system. Since κ = −1/(2θ), where θ is the spin-stiffness
exponent, discrete couplings become irrelevant at large scales for systems with a finite-temperature
spin-glass phase.

PACS numbers: 05.50.+q, 64.60.De, 75.10.Hk

Spin glasses are extremely rich systems that have
continued to surprise for many decades [1–13]. They
represent paradigmatic realizations of complexity that
are abundant in nature and numerous combinatorial
optimization problems [14]. Abstractions of spin-glass
physics have led to new optimization algorithms and new
insight into computational complexity [15–18], shed light
on protein folding [19], and provided models of neural
networks [20]. Notwithstanding this success, several fun-
damental questions still linger. These include [21] the
character of the low-lying states and whether there are
many incongruent [22] ground states. It has long been
known that spin-glass systems with discrete couplings
may rigorously exhibit an extensive degeneracy [23, 24],
but these results do not extend to continuous coupling
distributions [25–29]. The possibility of vanishing spec-
tral gaps mandates the distinction of localized and ex-
tended excitations, and only the latter can give rise to a
multitude of states.

In this paper, we connect the ±J and the Gaussian
spin glass models by interpolating them via the bino-
mial spin glass that has a tunable control parameter
m. We establish bounds of the spectral degeneracy of
the Ising system on bipartite graphs, which includes the
usual Edwards-Anderson (EA) model with ±J (m = 1)
and Gaussian (m → ∞) couplings [10, 30–44]. We thus
show that discrete (finite m) spin-glass samples exhibit
an extensive ground-state degeneracy, while continuous
ones (m → ∞) become two-fold degenerate, while more
generally the degeneracy depends on the precise way the
non-commuting limits N →∞ and m→∞ are taken.

We define the binomial Ising spin glass on a graph of

N sites [45] by the Hamiltonian

Hm = −
∑
〈xy〉

Jmxy sxsy ≡ −
L∑
α=1

Jmα zα. (1)

Here, the sum is over sites x and y, defining a link
α = 〈xy〉, L denotes the total number of links, and
sx = ±1. The binomial coupling for each link α, Jmα ≡

1√
m

∑m
k=1 J

(k)
α , is a sum of m copies (or “layers”) of bi-

nary couplings J
(k)
α = ±1, each with probability p of

being +1. The probability distribution of Jmα ,

P̃ (Jmα ) =

m∑
j=0

(
m

j

)
pm−j(1− p)jδ

(
Jmα −

m− 2j√
m

)
, (2)

is a binomial. In the large-m limit, the distribution (2)
approaches a Gaussian of mean

√
m(2p−1) and variance

σ2 = 4p(1 − p). In particular, for p = 1/2, the distribu-
tion P̃ (Jmα ) approaches the standard normal distribution
usually considered for the EA model [10].

To understand the degeneracies in the spectrum, we
study the entropy density of the `-th energy level,

S` ≡

∑
{Jmα }

P ({Jmα }) lnD`({Jmα })

N
, (3)

where D` is the degeneracy of the `-th energy level [23].

P ({Jmα }) =
∏L
α=1 P̃ (Jmα ) is the probability of the cou-

pling configuration.
We first embark on the derivation of an upper bound

on the ground state entropy density S0. We restrict our-
selves to bipartite graphs, where any closed loop encom-
passes an even number of links α. Consider two spin



2

configurations |s〉 6= |s′〉 and evaluate their energy differ-
ence ∆E = E(s)− E(s′). From Eq. (1),

∆E = −
L∑
α=1

Jmα
(
zα(s)− zα(s′)

)
= −2

L∑
α=1

Jmα nα, (4)

with integers nα = 0, ±1 defined by nα ≡ [zα(s) −
zα(s′)]/2, where zα(s) = sxsy. If |s〉 and |s′〉 are degen-
erate then ∆E = 0. A degeneracy only occurs for some
realizations {Jmα } of the couplings, and Eq. (4) can be
understood as a set of conditions for the couplings to
ensure this.

Consider an arbitrary reference configuration |s〉 of en-
ergy E(s) and examine its viable degeneracy with the
contending 2N − 1 other configurations |s′〉. Each of
these leads to a particular set of integers Cj = {nα}j ,
which form the set {Cj}|s〉j=1,2N−1

. A subset of those,

Sat|s〉 = {Cj1 ,Cj2 , · · · ,CjN }, will satisfy the degeneracy
condition ∆E = 0 in Eq. (4) for some coupling realiza-
tions. There are two types of solutions to the equation
∆E = 0: (i) nα = 0,∀α, or (ii) nα 6= 0, for at least one
link α. It is straightforward to demonstrate that there is
a single configuration |s′〉(6= |s〉) for which (i) nα = 0,∀α
[46]. This is the degenerate configuration |s′〉 obtained by
inverting all of the spins in |s〉. To determine whether the
degeneracy may be larger than two, we need to compute
the probability P that constraints of type (ii) may be sat-
isfied. While we cannot exactly calculate this probability
for general N and m, bounds that we will derive suggest
that limN→∞ limm→∞ S` = 0. As we will emphasize,
different large m and N limits may yield incompatible
results.

Constraints Cj ∈ Sat|s〉 are in a one-to-one correspon-
dence with zero-energy interfaces [47], whose size is equal
to the number gj of non-zero integers in the set {nα}j .
That is, given a fixed reference configuration |s〉 and a
degenerate one |s′〉, all type (ii) solutions to Eq. (4) are
associated with configurations where the product sxs

′
x is

equal to −1 in a non-empty set of sites x ∈ R. To avoid
the trivial redundancy due to global spin inversion, con-
sider the states |s〉 and |s′〉 for which the spin at an ar-
bitrarily chosen “origin” of the lattice assumes the value
+1. These states are related via |s′〉 = Us′s|s〉, where the
domain-wall operator Us′s is the product of Pauli matrices
that flip the sign of the spins s′x at the sites x where |s〉 and
|s′〉 differ. Regions R are bounded by zero-energy domain
walls that are interfaces dual to the links with nα = ±1,
i.e., surrounding the areas R where the spins in |s〉 an
|s′〉 have opposite orientation. Each satisfied constraint
Cj ∈ Sat|s〉 is associated with a state |s′〉 = Us′s|s〉 that is
degenerate with |s〉 for some coupling realization(s).

We next formalize the counting of independent domain
walls or clusters of free spins to arrive at an asymptotic
bound on their number [Eq. (9)]. This will, in turn, pro-
vide a bound on the degeneracy. We define a complete
set of independent constraints Sat|s〉 ⊂ Sat|s〉, of cardi-

nality M, to be composed of all constraints C̄ ∈ Sat|s〉
that lead to linearly independent equations of the form
of Eq. (4), ∆E = E(s) − E(s̄) = 0, on the coupling
constants {Jmα } [47]. All constraints in Sat|s〉 are a con-
sequence of the linearly independent subset of constraints
Sat|s〉. Each constraint C̄ ∈ Sat|s〉 is associated with a do-
main wall operator Us̄s that generates a degenerate state
|s̄〉 = Us̄s|s〉. If for a given coupling realization {Jmα }
there are M({Jmα }) ≤ M such independently satisfied
constraints, then the states

|n̄1n̄2 · · · n̄M 〉 ≡ U n̄1
s1̄s
U n̄2
s2̄s
· · ·U n̄MsM̄ s|s〉, (5)

(n̄i = 0, 1) will include all of the spin configurations de-
generate with |s〉. Taking global spin inversion into ac-
count, the degeneracy of |s〉 is

D`(|s〉,{Jmα }) ≤ 2M({Jmα })+1, (6)

where, for a system defined by the coupling constants
{Jmα }, the index `(|s〉, {Jmα })) denotes the level ` the
state |s〉 belongs to. The set {|n̄1n̄2 · · · n̄M 〉} may contain
additional states not degenerate with |s〉 [48].

After averaging over disorder, the expected number of
the linearly independent satisfied constraints Sat|s〉 is

〈M〉m ≡
∑
{Jmα }

∑
C̄∈Sat|s〉

P ({Jmα })δ{J
m
α }(C̄) ≡

∑
C̄∈Sat|s〉

P(C̄). (7)

Here, P(C̄) is the probability that a linearly indepen-
dent constraint C̄ is satisfied. The Kronecker δ{J

m
α }(C̄)

equals 1 if C̄ is satisfied for the couplings {Jmα } and is
zero otherwise. Let us bound the probability P(C̄) by
taking the form (2) of the coupling distribution into ac-
count. From the definition of the couplings {Jmα }, the
sum in Eq. (4) can effectively be read as including a sum
over layers k = 1, . . . ,m, which hence includes ḡm non-
zero terms. For general m ≥ 1, and even ḡm, the proba-

bility that half of the nonzero integers nαJ
(k)
α in Eq. (4)

are +1 and the remainder are −1 is

P(C̄) =

(
ḡm
ḡm

2

)
1

2ḡm
<

1
√
ḡm

. (8)

(Eq. (4) cannot be satisfied for odd ḡm.) From asymp-
totic analysis [49] and Eq. (8), the probability P(C̄)
scales (for large m) as (and, for any m, is bounded by)
1/
√
ḡm. Denoting by gmin the smallest possible value of

ḡ for the graph/lattice at hand,

〈M〉m ≤
M

√
gminm

. (9)

On a general graph, the number M of linearly indepen-
dent constraints C̄ on the coupling constants {Jmα } can-
not be larger than their total number, M ≤ L, i.e., the
number of links L on this graph. Putting all of the pieces
together, Eqs. (6) and (9) imply∑
{Jmα }

P ({Jmα }) lnD`(|s〉,{Jmα }) ≤ (1 +
L

√
gminm

) ln 2. (10)
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FIG. 1. Ground-state entropy S0N of the binomial Ising spin
glass with m layers, cf. Eq. (1), on square lattices of N = L2

spins from exact ground-state calculations (from the bottom:
L = 8, 16, 20, 24, and 32). Lines are fits of the form of (13) to
the data for sufficiently large m. The inset shows the linear
scaling of the amplitude A(N). The top line indicates the
constraint imposed by the upper bound (11).

Trying to evaluate the l.h.s. of Eq. (10) we must take into
account that whatever |s〉 we pick might be a ground
state for some coupling configurations, but will be an
excited state for others. Hence we cannot directly infer
a bound to the average entropy S` from (10). Since the
inverse temperature 1/(kBT ) = ∂ lnD/∂E, however, the
system’s ground-state degeneracy for couplings {Jmα } is
typically lower than (or equal to) that of any other level
` [50], i.e., D0 ≤ D`. This monotonicity of D(E) implies
that, typically, S0N =

∑
{Jmα }

P ({Jmα }) lnD0({Jmα }) ≤∑
{Jmα }

P ({Jmα }) lnD`(|s〉,{Jmα }). Then, Eq. (10) yields

S0 ≤ (
L

N
√
gminm

+
1

N
) ln 2. (11)

This is the promised rigorous bound. For p 6= 1/2 one
has a lower entropy density than that of p = 1/2. Thus,
Eq. (11) constitutes a generous upper bound on S0 for
general p. To study higher energy levels, consider the
average of Eq. (10) over all possible 2N reference spin
configurations |s〉. Performing this average and invok-
ing the monotonicity of D(E) suggests that the entropy
density S` of Eq. (3) of low-lying excited levels ` > 0 is,
typically, also bounded by the r.h.s of Eq. (11). For d-
dimensional hypercubic lattices with periodic boundary
conditions, the ratio L/N = d while gmin = 2d. Thus,
S0 ≤ (

√
d/2m+1/N) ln 2. Eq. (11) further suggests that,

in the thermodynamic (N →∞) limit [51],

S0(m′) ∼
√
m

m′
S0(m) for finite m,m′ � 1. (12)

We now study the exact m dependence of the ground
state entropies of the binomial model on the square lat-
tice with periodic boundaries and N = L2. To this end,

we employed an implementation of the Pfaffian technique
of counting dimer coverings of the lattice as discussed in
Ref. [52], which is a generalization of earlier methods
[53, 54] to fully periodic lattices. In Fig. 1, we present
the results for the ground-state entropy, averaged over
1000 coupling realizations for each lattice size. The data
are well described by

S0N =

(
A(N)√
m

+ 1

)
ln 2. (13)

Linear fits in 1/
√
m for fixed N work well for sufficiently

large m, as is illustrated by the straight lines in Fig. 1.
Thus, for any finite N , as m → ∞ the ground-state
entropy is equal to ln 2, implying a single degenerate
ground-state pair. The slope A(N) shown in the inset
follows a linear behavior, A(N) = aN + b, and we find
a = 0.0858(4) and b = 1.09(12). For not too small m,
our data are hence fully consistent with

S0 =

(
a√
m

+
1

N
+

b

N
√
m

)
ln 2. (14)

When N �
√
m � 1, Eq. (14) is consistent with the

physically inspired [51] scaling of Eq. (12). For large N ,
the bound of Eq. (11) would have been asymptotically
saturated if a ' 1, far larger than the actual value of a.
The behavior in the double limit m,N → ∞ is subtle:
(1) for m → ∞, N finite, we have a single ground-state
pair; (2) for N → ∞, m finite, there is a finite ground-
state entropy ∼ ln 2/

√
m; (3) for N →∞, m→∞, κ =

N/
√
m fixed, there is a finite number 2aκ of ground-state

pairs. Thus clearly the continuum and thermodynamic
limits are not commutative in general. Note further that
according to the bound S0 ≤ (

√
d/2m + 1/N) ln 2 for

hypercubic lattices additional rich behavior is expected
if the limit of high dimensions is correlated with that of
large m.

Let us turn to the study of excitations. By construc-
tion, cf. Eq. (4), for finite m the energy is “quantized”
in multiples of 1/

√
m. It is therefore natural to expect

a closing of the spectral gap as m → ∞. That this is
indeed the case can be shown rigorously for the one-
dimensional binomial spin glass in its thermodynamic
limit, with different behaviors for odd and even m, see
the discussion in the Supplemental Material [55]. The
closing of the gap is a consequence of the existence of
(rare) local excitations, i.e., finite-size clusters of almost
free spins [56]. Whether gapless non-local excitations ex-
ist and which form they take in the thermodynamic limit
is a long-standing question [57]. One possible approach
of investigating such excitations consists of subjecting in-
dividual samples to a system spanning perturbation by
a change of boundary condition and studying how this
affects the energy and configuration of the ground state.
Such defect energy calculations [58] enable us to extract
a scaling 〈|∆E|〉 ∼ Lθ of the defect energies with the
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FIG. 2. Effective spin stiffness exponents θ = θ(m) result-
ing from fits of the power law 〈|∆E|〉 = BLθ to the defect
energies for the binomial model of m layers (inset, from the
top: m = 1, 5, 11, 51, 201, and 1001), averaged over 10 000
disorder samples. The solid line of the inset corresponds to
the Gaussian model.

spin stiffness exponent θ. Generalizing Peierls’ argument
[59–62] for the stability of the ordered phase, one should
find θ > 0 for cases where there is a finite-temperature
spin-glass phase, and θ ≤ 0 otherwise. The latter case
is expected for dimensions d = 1 and d = 2, whereas θ
is positive for d ≥ 3 [63, 64]. We employed techniques
based on minimum-weight perfect matching [65, 66] to
perform such calculations for the binomial model on the
square lattice. The resulting disorder-averaged defect en-
ergies from exact ground-state calculations for samples
with periodic and antiperiodic boundaries are shown in
the inset of Fig. 2. As m increases, the decay of defect
energies as a function of L becomes steeper and the data
approach the behavior of the Gaussian EA model. The
effective spin stiffness exponents θ extracted from fits of
the type 〈|∆E|〉 = BLθ are shown in the main panel of
Fig. 2. These exponents appear to interpolate smoothly
between the limiting cases of the Gaussian model with
θ = −0.2793(3) and the ±J system with θ = 0 [63, 66].
Asymptotically, however, we expect that θ(m) = 0 for
any finite value of m when L & L∗(m). The scaling of
the crossover length L∗(m) ∼ mκ follows by considering
the model with the unscaled couplings

√
mJmα , for which

the energy gap ∆ is independent of m. The discreteness
of the spectrum becomes apparent once the correspond-
ing defect energies

√
m〈|∆E|〉 ∼ Lθ have decayed below

the size of the gap, i.e., for

L ≥ L∗(m) ∼ m−1/(2θ),

such that κ = −1/(2θ). For the d = 2 system we have
θ = −0.2793(3) [66], such that κ = 1.790(2), which is
in excellent agreement with the actual defect energies for
our system shown in Fig. 3.

It is clear that if θ < 0, as is the case for the Gaus-
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FIG. 3. Scaling collapse of the defect energies of the binomial
model for system sizes rescaled with the crossover length scale
L∗(m) ∼ mκ with κ = 1.79.

sian spin glass in two dimensions, excitations of a diver-
gent length scale may entail a vanishing energy penalty.
At zero temperature, the discreteness of the spectrum is
then always seen at large scales L & L∗(m). On the other
hand, for θ ≥ 0 (i.e., d ≥ 3), the above arguments im-
ply that the discreteness does not matter at large scales.
Also, in this case one should inspect the full probabil-
ity distribution of domain wall energies and the weight
it carries in the limit ∆E → 0 [56]. In how far such ex-
citations correspond to incongruent states, however, one
might only be able to infer by inspecting the configura-
tions themselves.

In summary, we introduced and discussed the binomial
spin glass. This class of models affords controlled access
to the enigmatic continuous (m→∞) finite dimensional
EA model. Its m = 1 realization is the quintessential dis-
crete spin glass, the ±J model. We derived bounds on
the spectral degeneracy of the binomial Ising spin glass
on general graphs and suggested an asymptotic scaling
that is fully supported by exact two-dimensional calcu-
lations. The behavior of defect energies suggests the
existence of a crossover length L∗(m) ∼ L−1/2θ below
which the binomial model behaves like the Gaussian sys-
tem. Our results show that the existence of degeneracies
depends on the particular way of taking the thermody-
namic (N → ∞) and continuous coupling (m → ∞)
limits, and limiting states with and without degenera-
cies can be reached by corresponding correlated limit-
ing processes, thus accommodating theories that postu-
late degeneracies as well as pictures stipulating a unique
ground-state pair. An intriguing prediction regards an
effectively negative crossover scaling exponent in three
dimensions, where hence discreteness of the spectrum is
expected not to matter at large scales.

The physics of spin-glass models and, in particular,
the role of degeneracies has also recently attracted at-
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tention from another side. In the context of quantum
annealing [67] as implemented in the devices by D-Wave
and similar machines that are being developed by com-
peting consortia, degeneracies are not a desired feature
as the quantum annealing process does not sample such
states uniformly [68]. On the other hand, continuous
coupling distributions may also be undesired because of
increased susceptibility to external noise implied by chaos
in spin glasses [69–72]. Our binomial glasses may allow
for realizations that suffer the least from these combined
problems. While the present system is already a gen-
eralization of the usually considered spin-glass models,
we believe that the approach of decomposing continuous
couplings into discrete layers and the intriguing conse-
quences it allowed us to uncover in terms of the general
non-commutativity of the thermodynamic and continu-
ous coupling limits is promising and we expect exciting
applications to models in other fields.
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