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We analyze the relation between CP-divisibility and the lack of information backflow for an
arbitrary – not necessarily invertible – dynamical map. It is well known that CP-divisibility always
implies lack of information backflow. Moreover, these two notions are equivalent for invertible maps.
In this letter it is shown that for a map which is not invertible the lack of information backflow always
implies the existence of completely positive (CP) propagator which, however, needs not be trace-
preserving. Interestingly, for a wide class of image non-increasing dynamical maps this propagator
becomes trace-preserving as well and hence the lack of information backflow implies CP-divisibility.
This result sheds new light into the structure of the time-local generators giving rise to CP-divisible
evolutions. We show that if the map is not invertible then positivity of dissipation/decoherence
rates is no longer necessary for CP-divisibility.

PACS numbers: 03.65.Yz, 03.65.Ta, 42.50.Lc

Introduction.— Recently, the notion of non-Markovian
quantum evolution received considerable attention (see
review papers [1–4]). Quantum systems interacting with
an environment [5, 6] are of increasing relevance due
to rapidly developing modern quantum technologies like
quantum communication or quantum computation [7]. It
turns out that recent experimental techniques allow us to
go beyond standard Markovian approximations and ob-
serve new memory effects caused by the environmental
interaction [8–10]. Therefore, there is a need for the ex-
ploration of non-Markovian regime, and characterizing
the genuine properties of this kind of evolution.
To this end, two main approaches which turned out

to be very influential are based on the concept of CP-
divisibility [11] and information flow [12]. A dynamical
map {Λt}t≥0 is a family of completely positive (CP) and
trace-preserving (TP) maps acting on the space B(H) of
bounded operators on the Hilbert spaceH. In the present
Letter we say that {Λt}t≥0 is divisible if

Λt = Vt,sΛs, (1)

where Vt,s : B(H) → B(H) is a linear map for every t ≥ s.
Note that since Λt is TP the map Vt,s is necessarily TP
on the range of Λs but needs not be trace-preserving on
the entire B(H). However, if Vt,s is TP on B(H), one calls
{Λt}t≥0 P-divisible if Vt,s is also a positive map on the
entire B(H), and CP-divisible if Vt,s is CP on the entire
B(H) [13]. According to [11] the evolution is considered
Markovian iff the corresponding dynamical map {Λt}t≥0

is CP-divisible. This definition is motivated by its classi-
cal limit, which is compatible with a classical Markovian
process, and because such Markovian evolution can be
represented as the continuous limit of sequence of discrete
interactions with a memoryless environment [1, 14].

A second idea is based on a physical feature of the
system-reservoir interaction. It is claimed [12] that the
phenomenon of reservoir memory effects may be associ-
ated with an information backflow, that is, for any pair
of density operators ρ1 and ρ2 one can define the infor-
mation flow

σ(ρ1, ρ2; t) =
d

dt
||Λtρ1 − Λtρ2||1, (2)

where ||A||1 denotes the trace norm of A. Following [12]
Markovian evolution is characterized by σ(ρ1, ρ2; t) ≤ 0.
Whenever σ(ρ1, ρ2; t) > 0 one calls it information back-
flow meaning that the information flows from the envi-
ronment back to the system. In this case the evolution
displays nontrivial memory effects and it is evidently non-
Markovian.
Interestingly, both P- and CP-divisible maps have a

clear mathematical characterization [15].

Theorem 1 Let us assume that {Λt}t≥0 is an invertible
dynamical map, i.e. Λ−1

t does exist for any t ≥ 0. Then
{Λt}t≥0 is P-divisible iff

d

dt
||ΛtX ||1 ≤ 0, (3)

for any Hermitian X ∈ B(H). It is CP-divisible iff

d

dt
||(1⊗Λt)X ||1 ≤ 0, (4)

for any Hermitian X ∈ B(H⊗H).

Actually, CP- (or P-) divisibility implies (4) [or (3)] for an
arbitrary map. Invertibility is only essential to prove the
opposite implication. Let us observe that the condition
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σ(ρ1, ρ2; t) ≤ 0 is a slightly weaker version of (3): one
takes X = ρ1 − ρ2 which means that X is Hermitian but
traceless. In [15] two of us proposed how to reconcile
P-divisibility with information flow by noticing that any
Hermitian operator X can be interpreted (up to some
multiplicative constant) as a so-called Helstrom matrix
[16] X = p1ρ1 − p2ρ2 with p1 + p2 = 1. It characterizes
the error probability of discriminating between states ρ1
or ρ2 with prior probabilities p1 and p2, respectively [15].
The relation between divisibility and information flow

was recently reconsidered by Bylicka et al. [17]. They
proved

Theorem 2 Let {Λt}t≥0 be an invertible dynamical
map, then it is CP-divisible iff

d

dt
||(1d+1⊗Λt)(ρ1 − ρ2)||1 ≤ 0, (5)

for any pair of density operators ρ1, ρ2 in B(H′⊗H) with
dim(H′)− 1 = dim(H) = d.

Again, invertibility is only essential to prove that (5) im-
plies CP-divisibility. So comparing (4) with (5) one en-
larges the dimension of the ancilla d → d + 1, but uses
only equal probabilities p1 = p2, like in the original ap-
proach to the information flow [12].
If t = 0 is the starting time for the system-environment

interaction, any open system dynamics can be written as
Λtρ = TrE [U(t, 0)ρ ⊗ ωEU

†(t, 0)] where ωE is a fixed
state of the environment. According to the postulates of
quantum mechanics U(t, s) is a unitary evolution fam-
ily which satisfies the Schrödinger Equation, and so it is
continuous and differentiable. Since the partial trace is
continuous but non-invertible, a dynamical map {Λt}t≥0

is a continuous, differentiable family (in the parameter
t), but not necessarily invertible.
Interestingly, Buscemi and Datta [18] analyzed infor-

mation backflow defined in terms of the guessing proba-
bility of discriminating an ensemble of states {ρi} (i =
1, 2, . . .) acting on H⊗H with prior probabilities pi. It
was shown [18] that a discrete time evolution is CP-
divisible iff the guessing probability decreases for any
ensemble of states. In this approach invertibility of the
maps plays no role and hence this approach is universal.
However, the price one pays, is the use of ensembles con-
taining arbitrary number of states ρi. Moreover, since
just a discrete evolution Λn is considered, there is not di-
rect relation to the problem with continuous dynamical
maps. For example such maps do not satisfy time-local
master equations. Anyway, [18] poses an important ques-
tion whether the assumption of invertibility in Theorem
1 may be removed.
In this Letter we show how to generalize Theorem 1

and 2 to non-invertible dynamical maps. This result
sheds new light into time-local master equations

d

dt
Λt = LtΛt , Λt=0 = 1. (6)

One usually says that the corresponding solution {Λt}t≥0

is CP-divisible if the two-point propagator

Vt,s = T e
∫

t

s
Lτdτ , (7)

is CPTP for any t ≥ s, and hence one concludes that Lt

is a time-dependent GKLS generator [19]. However, it
turns out to be true only for invertible dynamics. In this
Letter we show that if {Λt}t≥0 is not invertible, it can
still be CP-divisible even if the corresponding generator
Lt does not have GKLS structure.

Divisible maps.— Interestingly, the property of divisi-
bility is fully characterized by the following

Proposition 1 A dynamical map {Λt}t≥0 is divisible iff

Ker(Λt) ⊇ Ker(Λs), (8)

for any t > s.

Proof: If {Λt}t≥0 is divisible and X ∈ Ker(Λs), then

ΛtX = Vt,s(ΛsX) = Vt,s0 = 0,

and hence X ∈ Ker(Λt).
Suppose now that (8) is satisfied. To show that

{Λt}t≥0 is divisible we provide a construction for Vt,s.
This construction is highly non-unique: if Y ∈ Im(Λs),
i.e. there exists X such ΛsX = Y , we define Vt,sY =
ΛtX . Suppose now that Y /∈ Im(Λs) and let Πs :
B(H) → Im(Λs) be a (Hermiticity preserving) projec-
tor onto Im(Λs) [14], that is, ΠsΠs = Πs is an identity
operation on Im(Λs). Define

Vt,sY := ΛtX, (9)

where X is an arbitrary element such that ΠsY = ΛsX .
It only remains to prove that this is a well-defined con-
struction. Indeed, if ΛsX = ΛsX

′ = ΠsY , then our
construction implies ΛtX = ΛtX

′ for t > s. Specifically,
∆ = X − X ′ ∈ Ker(Λs) and hence due to (8) one has
∆ ∈ Ker(Λt) which implies Λt∆ = ΛtX − ΛtX

′ = 0. It
should be stressed, however, that Vt,s needs not be TP
due to the fact that the projector Πs needs not be TP.

�

Note that if {Λt}t≥0 is invertible, then it is always
divisible due to Vt,s = ΛtΛ

−1
s . In this case condition (8)

is trivially satisfied: Ker(Λt) = Ker(Λs) = 0.
Actually, there is a simple sufficient condition for di-

visibility

Proposition 2 If the dynamical map {Λt}t≥0 satisfies
condition (3) for all Hermitian X ∈ B(H), then it is
divisible.

Proof: Suppose that (3) is satisfied but {Λt}t≥0 is not
divisible, that is, there exists X such that ΛsX = 0 but
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ΛtX 6= 0 (t > s). This shows ||ΛtX ||1 > 0 = ||ΛsX ||1
and hence ||ΛtX ||1 does not monotonically decrease.

�

Clearly, the above condition is sufficient but not nec-
essary, since any invertible {Λt}t≥0 is divisible even if it
does not satisfy (3).

Arbitrary dynamical maps.— Now we prove the cen-
tral result which provides generalization of Theorems 1
and 2 for arbitrary, that is, not necessarily invertible,
dynamical maps. Let us start with two lemmas.

Lemma 1 Let M be a linear subspace in B(H), and con-
sider a trace-preserving linear map Φ : M → B(H). If Φ
is a contraction in the trace norm, then it is positive.

Proof: take arbitrary X ≥ 0 from M . One has
||X ||1 = Tr(X). Now, since Φ is trace-preserving
Tr(X) = Tr[Φ(X)] ≤ Tr|Φ(X)| = ||Φ(X)||1. Finally,
since Φ is a contraction ||Φ(X)||1 ≤ ||X ||1 and hence
it implies ||Φ(X)||1 = Tr[Φ(X)], which proves that
Φ(X) ≥ 0. �

Note, that if M = B(H) then one recovers the well
known result [20, 21] used in [15] and recently in [17].

Lemma 2 Let M be a linear subspace in B(H) with
dim(H) = d. If M is spanned by positive operators (den-
sity matrices), then a d-positive map Φ : M → B(H) can

be extended to a CP map Φ̃ : B(H) → B(H).

The problem of CP extensions of a CP map Φ : M →
B(H) is well-studied in the theory of operator algebras
and was solved by Arveson [24] when M defines an op-
erator system (see also [22, 23]). Recently the extension
problem was studied in the context of quantum opera-
tions in [25, 26] beyond operator systems. In particular,
Jencova proves Lemma 2 in [25]. Nevertheless, for the
sake of completennes we include a explicit proof in the
supplementary material [14].

Theorem 3 If a dynamical map {Λt}t≥0 satisfies con-
dition (4) for any Hermitian X ∈ B(H⊗H), then it is
divisible with CP propagators Vt,s.

Proof: By Proposition 2 the dynamical map {1⊗Λt}t≥0

is divisible, hence so is {Λt}t≥0, therefore Λt = Vt,sΛs. If
the map Λs is not invertible, the propagator Vt,s is not
uniquely defined. We show that one can find Vt,s which
is CP. Note, that (4) implies that 1⊗Vt,s is a contraction
on the image of 1⊗Λs [15, 17]. Since 1⊗Vt,s is trace-
preserving on Im(1⊗Λs), Lemma 1 implies that 1⊗Vt,s

is positive on Im(1⊗Λs) or equivalently that Vt,s is d-
positive on Im(Λs). It should be stressed, that Vt,s is
defined on the linear subspace Im(Λs) ⊂ B(H). Now, the
question is about the extension of Vt,s to the whole op-
erator space B(H). However, since the subspace Im(Λs)
is spanned by the positive operators Λs(X), where X are

positive operators from B(H), Lemma 2 guaranties the

existence of a CP extension Ṽt,s : B(H) → B(H). One
has, therefore,

Λt = Vt,sΛs = Ṽt,sΛs. (10)

�

Clearly, if Λs is invertible then Ṽt,s = Vt,s. It should

be stressed, however, that generically Ṽt,s needs not be
trace-preserving. It is always trace-preserving on Im(Λs).
Hence, monotonicity property (4) does not imply CP-
divisibility but a slightly weaker property. Examples of
CP extensions which are not trace-preserving were re-
cently provided in [26].

Image non-increasing dynamical maps.— Consider
now a wide class of dynamical maps which satisfy

Im(Λt) ⊆ Im(Λs), t > s. (11)

We shall refer to these as “image non-increasing dynam-
ical maps”. Note that “kernel non-decreasing” Eq. (8)
(equivalent to divisibility) only implies dim[Im(Λt)] ≤
dim[Im(Λs)]. Leaving aside invertible maps, we can eas-
ily identify two natural instances of maps satisfying (11).

The first one are normal divisible maps, i. e. ΛtΛ
†
t =

Λ†
tΛt, where Λ†

t is the dual map (Heisenberg picture),

that is, Tr[Λ†
t (X)ρ] = Tr[XΛt(ρ)]. For normal maps the

kernel is orthogonal to the image, so divisibility implies
(8) and hence (11) immediately follows. The second in-
stance are diagonalizable commutative maps (here com-
mutative means ΛtΛs = ΛsΛt for arbitrary t and s). In
this case Λt is characterized by the diagonal representa-
tion Λtρ =

∑
α λα(t)FαTr(G

†
αρ), with time independent

damping basis [27] {Fα, Gβ} such that Tr(F †
αGβ) = δαβ

(α, β = 0, 1, . . . , d2 − 1).

Theorem 4 If the image non-increasing dynamical map
{Λt}t≥0 satisfies condition (4) for any Hermitian X ∈
B(H⊗H), then it is CP-divisible.

Proof: clearly (4) implies (Theorem 3) that {Λt}t≥0 is
divisible with Vt,s which is CPTP on Im(Λs). Since
Λt=0 = 1, continuity implies that there exists some
small ǫ such that Λǫ is invertible. Let us take t1 the
smallest time instant where the dynamics becomes non-
invertible, i. e. {Λt}t1>t≥0 is invertible. Then we can
write Λt1 = Vt1,t1−ǫΛt1−ǫ, where Vt1,t1−ǫ is CPTP [on
the entire B(H)] for ǫ ∈ (0, t1). Consider now the opera-
tor

Πt1 := lim
ǫ→0+

Vt1,t1−ǫ. (12)

It turns out that Πt1 is a CPTP projection onto Im(Λt1).
We provide a detailed proof of this in the supplemen-
tary material [14]. Hence Ṽt,t1 = Vt,t1Πt1 is CPTP on
the entire B(H). Consider now the smallest t2 > t1 such
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that dim[Im(Λt2)] < dim[Im(Λt1)] and dim[Im(Λt)] =
dim[Im(Λt1)] for t1 ≤ t < t2. For image non-increasing
dynamical maps it means that Im(Λt2) ⊂ Im(Λt1), and
Im(Λt) = Im(Λt1) for t1 ≤ t < t2. Then considering
{Vt,s}t2>t>s≥t1 as a bijective family of maps on the space
Im(Λt1), the same argument as before, with the role of
Λt played now by Vt,t1 , applies to show that Πt2 is a
CPTP on Im(Λt1), which projects onto Im(Λt2). Finally,
let {t1, . . . , tk} be a set such that dim[Im(Λt)] is discon-
tinuous, that is,

dim[Im(Λt1)] > dim[Im(Λt2)] > . . . > dim[Im(Λtk)].

Note, that for t ∈ [ti, ti+1) one has

Im(Λti) = Im(Λt) ) Im(Λti+1
). (13)

Hence, for s ∈ [ti, ti+1) one defines

Ṽt,s = Vt,sΠti . . .Πt1 , (14)

which is CPTP on the entire B(H). �

Note that a parallel argument applies to show the
equivalence between Eq. (3) and P-divisibility in the
case of image non-increasing maps.

Theorem 5 : A dynamical map {Λt}t≥0 satisfying con-
dition (5) for any pair of density operators ρ1, ρ2 in
B(H′⊗H) with dim(H′) − 1 = dim(H) = d is divisi-
ble with CP propagators Vt,s. In addition, if the map is
image non-increasing, it is CP-divisible.

The proof of this theorem follows from Theorems 3 and
4, and a similar argument as in [17]. We leave it as a
supplementary material [14].

CP-divisibility vs. master equation – Any differentiable
Λt satisfies a time-local master equation of the form of
(6), so that Vt,s = T e

∫
t

s
Lτdτ . Then CP-divisibility im-

plies that Vs,s is a CPTP identity map on some sub-
space M , such that Im(Λs) ⊆ M ⊆ B(H). Moreover,
if {1 ⊗ Λt}t≥0 is image non-increasing and contracting,
there exists a CPTP projector Πs onto Im(Λs).

Corollary 1 If the image non-increasing dynamical map
{Λt}t≥0 satisfies a time-local master equation (6), then it

is CP-divisible iff 1⊗T e
∫

t

s
Lτdτ is a TP contraction on

B(H)⊗ Im(Λs) for all pairs t ≥ s.

In the following examples we will show that this does
not require a time dependent GKLS form for all times
(another example can be found in [14]).

Example 1 (Amplitude damping channel) The dy-
namics of a single amplitude-damped qubit is governed by
a single function G(t) which depends on the form of the
reservoir spectral density J(ω) [5]:

Λtρ =

(
|G(t)|2ρ11 G(t)ρ12
G∗(t)ρ21 (1− |G(t)|2)ρ11 + ρ22

)
, (15)

This evolution is generated by the following time-local
generator

Ltρ = −
is(t)

2
[σ+σ−, ρ] + γ(t)(σ−ρσ+ −

1

2
{σ+σ−, ρ}),

where σ± are the spin lowering and rising operators to-

gether with s(t) = −2Im Ġ(t)
G(t) , and γ(t) = −2Re Ġ(t)

G(t) . This

generator is commutative and diagonalizable. Now, the
dynamical map is invertible whenever G(t) 6= 0. Suppose
now that G(t∗) = 0 and G(t) 6= 0 for t < t∗ (note that
G(0) = 1). The image of Λt∗ is just proportional to the
ground state P0 = σ−σ+, and so a CPTP projector onto
Im(Λt∗) reads

Πt∗X = P0TrX. (16)

It is, therefore clear that {Λt}t≥0 is divisible iff G(t) =
0 for t ≥ t∗. Hence, finally, the map {Λt}t≥0 is CP-
divisible iff it is divisible and γ(t) ≥ 0 for t < t∗. Note
that γ(t) is arbitrary for t ≥ t∗. The only constraint is
G(t) = 0: γ(t) blows up to +∞ at t = t∗, and then is

arbitrary provided
∫ t

0
γ(τ)dτ = ∞ for all t ≥ t∗. Hence,

positivity of γ(t) is sufficient but not necessary for CP-
divisibility. It is necessary only if γ(t) is finite for finite
times, that is, the generator Lt is regular and the map
Λt is invertible. Note that divisibility means that if the
system relaxed to the ground state (at time t∗) it stays
in that state forever. In addition, CP-divisibility means
that the relaxation to the ground state was monotonic
d
dt
|G(t)| ≤ 0.

Example 2 (Random unitary evolution) Consider
the qubit evolution governed by the following time-local
generator

Ltρ =
1

2

3∑

k=1

γk(t)(σkρσk − ρ), (17)

which leads to the unital dynamical map (time-dependent

Pauli channel): Λtρ =
∑3

α=0 pα(t)σαρσα. The map is
invertible if its corresponding eigenvalues

λi(t) = e−Γj(t)−Γk(t) ; Γj =

∫ t

0

γj(τ)dτ

where {i, j, k} is a permutation of {1, 2, 3}, are different
from zero (note, that the remaining eigenvalue λ0(t) =
1). Now, if for example Γ3(t1) = ∞ at finite time t1,
then λ1(t1) = λ2(t1) = 0, and hence divisibility implies
λ1(t) = λ2(t) = 0 for t ≥ t1. One finds the corresponding
CPTP projector

Πt1X =
1

2
(X + σ3Xσ3).

Note that Πt1σ1 = Πt1σ2 = 0. Now, if at t2 > t1 one has
Γ2(t2) = ∞ (or equivalently Γ1(t2) = ∞), then λ3(t2)
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vanishes as well and hence divisibility implies λi(t) = 0
for t ≥ t2 (i = 1, 2, 3). One finds the corresponding
CPTP projector

Πt2X =
1

2
ITr(X),

that is, it fully depolarizes an arbitrary state of the sys-
tem. To summarize: the evolution is CP-divisible iff all
γα(t) ≥ 0 for t < t1, and γ3(t) continues to be nonegative
up to t2. From t2 on the system stays at the maximally
mixed state.

Conclusions. — In this Letter we analyzed the re-
lation between monotonicity of the trace norm (4) and
CP-divisibility of the dynamical map {Λt}t≥0. While
CP-divisibility always implies (4), it is well known that
for invertible maps the converse is also true, that is, these
two notions are equivalent. For maps which are not in-
vertible the situation is much more subtle (as was re-
cently noticed in [17]). We proved that in this case, Eq.
(4) implies a slightly weaker property — there exists a
family of completely positive maps Vt,s on B(H) which
are trace-preserving on the image of Λs [but not on the
entire B(H)]. Interestingly, for maps which are image
non-increasing trace-preservation is guarantied on B(H)
and hence they are CP-divisible. This result sheds new
light into the structure of the time-local generator Lt

which gives rise to CP-divisible evolution. For invertible
maps, Lt has a structure of time-dependent GKLS gen-
erator, in particular all dissipation rates γk(t) ≥ 0 for
all t ≥ 0 [28]. It is no longer true for dynamical maps
which are not invertible, that is, they correspond to sin-
gular generators [29]. In this case γk(t) ≥ 0 but only for
t ∈ [0, t∗), where t∗ is the first moment of time where
Λt becomes non-invertible. For t ≥ t∗ some γk(t) might
be temporally negative, and still the evolution might be
CP-divisible. The point t∗ at which some γk(t) becomes
singular, provides an analog of the event horizon: the
future behavior of a set of γk(t) does not effect the evo-
lution of the system. A typical example is the evolution
reaching equilibrium state at finite time t∗. Then the sys-
tem stays at equilibrium forever irrespective of the future
(t > t∗) time dependence of the generator.
Finally, we note that the relation between the result

by Buscemi and Datta [18] on guessing probabilities for
discrete evolution Λn and our results on continuous evo-
lution is not evident and deserves further analysis. On
the other hand, the general problem of finding a CPTP
extension of a CPTP propagator Vt,s on a subspace re-
mains open. If possible, it would ensure the complete
equivalence of CP-divisibility and complete contractiv-
ity.
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