
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fundamental Limitations for Measurements in Quantum
Many-Body Systems

Thomas Barthel and Jianfeng Lu
Phys. Rev. Lett. 121, 080406 — Published 24 August 2018

DOI: 10.1103/PhysRevLett.121.080406

http://dx.doi.org/10.1103/PhysRevLett.121.080406


Fundamental limitations for measurements in quantum many-body systems

Thomas Barthel1 and Jianfeng Lu2, 1

1Department of Physics, Duke University, Durham, North Carolina 27708, USA
2Department of Mathematics, Duke University, Durham, North Carolina 27708, USA

(Dated: June 2, 2018)

Dynamical measurement schemes are an important tool for the investigation of quantum many-
body systems, especially in the age of quantum simulation. Here, we address the question whether
generic measurements can be implemented efficiently if we have access to a certain set of exper-
imentally realizable measurements and can extend it through time evolution. For the latter, two
scenarios are considered (a) evolution according to unitary circuits and (b) evolution due to Hamil-
tonians that we can control in a time-dependent fashion. We find that the time needed to realize a
certain measurement to a predefined accuracy scales in general exponentially with the system size
– posing a fundamental limitation. The argument is based, on the construction of ε-packings for
manifolds of observables with identical spectra and a comparison of their cardinalities to those of
ε-coverings for quantum circuits and unitary time-evolution operators. The former is related to the
study of Grassmann manifolds.

Introduction. – In experiments with quantum many-
body systems, we usually have direct access only to a
relatively small set of standard observables in measure-
ments. For quantum computation devices, these are
often Pauli measurements. In ion-trap systems, state-
dependent laser-induced resonance fluorescence allows for
the measurement of qubits in the computational basis [1–
3]. For superconducting qubits, such projective measure-
ments can be realized through a state-dependent shift in
the resonance frequency of a dispersively coupled cavity
[4, 5]. Also projection operators onto specific multi-qubit
product states have been measured [6]. For ultracold
atoms, the particle density can be accessed through ab-
sorption imaging [7] and more recently developed quan-
tum gas microscopes with single-site resolution based on
fluorescence imaging [8–10].

Dynamical control can be used to measure observables
that are not directly accessible. This is especially impor-
tant for the purpose of quantum simulation [11–14]. The
design of quantum simulators is advancing rapidly [15–
20]. The relevant observables for the simulated systems
will often not be directly accessible in the simulating de-
vice and hence require dynamical measurement schemes.
While the investigation of general abilities and limita-
tions of such schemes has just begun, several particular
incarnations are successfully used in experiments:

Measurement of Pauli-σ̂x and σ̂y for ion-trap qubits are
realized through the application of single-qubit gates and
subsequent measurement of σ̂z. More elaborate schemes
employ two-qubit gates, spin echo, spatial shuttling of
qubits or hiding in non-computational electronic states,
e.g., to do Bell-state measurements [21, 22]. Similarly, for
superconducting circuits, Bell-state measurements can be
realized [23] through application of single-qubit rotations
and controlled phase gates [24] before the standard Pauli
measurements. In ultracold atom experiments, the mo-
mentum distribution is obtained in time-of-flight mea-
surements by letting the quantum gas expand freely be-
fore absorption imaging [7, 25, 26]. Double-occupancies
can be determined by rapid ramping of the lattice po-

tential, tuning of interaction strengths, mapping double
occupancy to a previously unpopulated spin state us-
ing radio-frequency pulses, and final absorption imaging
[27, 28]. Nearest-neighbor correlations have been mea-
sured through an additional modulation of the lattice
depth or deformation of a superlattice [29–31]. Bloch
band populations can be examined by adiabatic band
mapping [32–34]. Solid-state materials are studied with
various scattering and microscopy techniques. The con-
trol over the Hamiltonian is naturally rather limited in
this case. Nevertheless, pump-probe schemes are, for ex-
ample, employed in time-resolved optical and photoemis-
sion spectroscopy [35–37], scanning tunneling microscopy
[38, 39], and electron microscopy [40–42] to enlarge the
set of accessible observables.

In principle, arbitrary observables can be evaluated
after state tomography [43, 44] or compressed sensing
procedures [45]. However, for many-body systems, the
number of required measurements and classical compu-
tational resources grow exponentially with increasing sys-
tem size unless additional strong constraints can be lever-
aged [46, 47].

Here, we assess the efficiency of dynamical measure-
ment schemes by derivation of lower bounds on covering
numbers for manifolds of observables with identical spec-
tra and by comparing them to upper bounds on covering
numbers for quantum circuits and unitary time-evolution
operators. Note that ε-covering numbers N (ε) and ε-
packing numbers N̄ (ε) of a metric space are closely re-
lated with N̄ (2ε) ≤ N (ε) ≤ N̄ (ε) [48, 49] (Fig. 1). The
analysis shows that the time needed to realize a certain
measurement to a predefined accuracy scales in general
exponentially with the system size. The result holds for
the spectra of all typical observables of many-body sys-
tems. In the following, we consider lattice systems con-
sisting of L d-dimensional qudits. We use the Bachmann-
Landau symbols O and Ω for upper and lower bounds.
Variants of lemmas 1 and 3 have been stated by Szarek
in Refs. [50, 51]. Proofs for the lemmas and theorem 3
are given in the Supplemental Material.
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FIG. 1. Left: An ε-covering Q for a space M with metric d
is a subset ofM such that for every z ∈M there is an x ∈ Q
with d(x, z) ≤ ε. The cardinality N (M, d, ε) of the smallest
ε-covering is called the ε-covering number of (M, d). We are
comparing covering numbers for sets of evolved observables
Û†ÔÛ with covering numbers for the set of all observables
with the same spectrum as Ô. Center: An ε-packing Q is a
subset ofM such that all x 6= y ∈ Q have distance d(x, y) > ε.
Right: An ε-net is an ε-covering and, at the same time, an
ε-packing.

Evolution due to unitary quantum circuits. – First, let
us consider the case of observables that are evolved using
unitary circuits composed of arbitrary k-site gates.

Theorem 1. Let Ô = Ô† and consider quantum circuits
of size Ng > L with each gate ûi acting on at most k
sites. The evolved observables {Û†ÔÛ} with any such
quantum circuits {Û =

∏Ng

i=1 ûi} are elements of

Ncirc ≤ LkNg

(
14Ng
ε

)d2kNg

= eO(Ng lnNg) (1)

balls of radius εw(Ô) in operator space. Here, w(Ô) :=

(ωmax−ωmin)/2 denotes the spectral width of Ô, i.e., half
the difference of the maximum and minimum eigenvalues
of Ô.

This can be shown by first bounding covering num-
bers for the quantum circuits Û . In similar situations,
in Refs. [14, 52], the k-qudit gates ûi have been approx-
imated by small circuits built from a finite gate library.
This can be done as in practical implementations for
quantum computation by first decomposing them into
single-qubit and CNOT gates [53–55] and further ap-
proximating the latter according to the Solovay-Kitaev
algorithm [56, 57] or alternative schemes [58]. However,
one can take a more direct approach and simply employ
an ε̃-covering for the k-qudit gates.

Lemma 1. For 0 < ε̃ ≤ 1/10, the ε̃-covering number for
the unitary group U(n) with respect to the operator-norm
distance obeys(

3

4ε̃

)n2

≤ N (U(n), ‖ · ‖, ε̃) ≤
(

7

ε̃

)n2

. (2)

We fix an ε̃-covering Q for the set U(dk) of all gates.
For a circuit Û =

∏
i ûi, let Ûε̃ be the circuit where each

of the Ng gates is replaced by the nearest element in Q.
Then, according to the triangle inequality, ‖Ûε̃ − Û‖ ≤
Ng ε̃ and, choosing ε̃ = ε/(2Ng),

‖Û†ε̃ ÔÛε̃ − Û
†ÔÛ‖ ≤ 2‖Ûε̃ − Û‖w(Ô) ≤ εw(Ô). (3)

The upper bound in lemma 1 gives |Q| ≤ (14Ng/ε)
d2k .

With the bound LkNg on the number of possible circuit
topologies and |Q|Ng combinations for the gates in Ûε̃,
theorem 1 follows.
Evolving with time-dependent interactions. – Similarly,

we can bound the volume of operators that is reachable
by evolving Ô with respect to time-dependent Hamilto-
nians Ĥ(t).

Theorem 2. For time-dependent Hamiltonians Ĥ(t) =∑K
i=1 ĥi(t) with K terms, let interactions be k-local

and norm-bounded, i.e., terms ĥi(t) act on at most
k sites and |h| := maxi sup0≤t≤T ‖ĥi(t)‖/~ is finite.
For every term ĥi and all times t, s, let commutators
[ĥi(t), ĥj(s)] be nonzero for at most z terms ĥj. Ob-
servables {Û†(T )ÔÛ(T )}, evolved with such Hamiltoni-
ans {Ĥ} from t = 0 to T , are elements of

NT ≤ LkK
(

112T 2K2z|h|2

ε2

)4d2kT 2K2z|h|2/ε

(4a)

= LkKeO(T 2K2z ln(T 2K2z)) (4b)

balls of radius εw(Ô) in operator space.

The number K of terms in the Hamiltonian is bounded
by
(
L
k

)
≤ Lk and we have assumed that the interaction

graph (choice of k-site supports of interactions terms) is
time-independent. The number of interaction graphs is
hence bounded by LkK . Also, z may be O(L0) but can
always be bounded by kLk−1 such that logNT is in any
case polynomial in the system size L and time T . The
decisive step for proving theorem 2 is a Trotter-Suzuki de-
composition [59–61] of the time-evolution operator Û(t)

which obeys i~∂tÛ(t) = Ĥ(t)Û(t) and Û(0) = 1̂.

Lemma 2. With the preconditions of theorem 2, the
time-evolution operator can be approximated by the de-
composition Û∆t(T ) :=

∏Nt

n=1

∏
i ûi(n) into Nt time

steps of size ∆t = T/Nt, where ûi(n) denotes the time-
evolution operator from time (n−1)∆t to n∆t, generated
by ĥi(t). The accuracy is

‖Û∆t(T )− Û(T )‖ ≤ ∆t TKz|h|2. (5)

This can be shown following the derivation in
Ref. [61] and applying the triangle inequality. Accu-
racy ‖Û∆t(T ) − Û(T )‖ ≤ ε/4 is achieved for Nt =
4T 2Kz|h|2/ε time steps. Now we are basically back to
the case of observables that are evolved by a quantum cir-
cuit and can proceed, as before, by approximating each
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FIG. 2. Using a Trotter-Suzuki decomposition, the evolu-
tion with respect to k-local Hamiltonians with arbitrary time-
dependence can be approximated by quantum circuits. Each
k-site gate (here, k = 2) in a quantum circuit can be ap-
proximated by an element of an ε̃-covering for the unitary
group U(dk). This construction allows us to bound covering
numbers for sets of evolved observables {Û†ÔÛ}.

of the KNt gates in Û∆t by the nearest element of an ε̃-
covering Q for U(dk). Calling the resulting circuit Û∆t

ε̃ ,
we can achieve accuracy ‖Û∆t

ε̃ (T )− Û∆t(T )‖ ≤ ε/4 with
|Q| ≤ (28KNt/ε)

d2k according to lemma 1. Then,

‖[Û∆t
ε̃ (T )]†ÔÛ∆t

ε̃ (T )− Û†(T )ÔÛ(T )‖ ≤ εw(Ô) (6)

and with |Q|KNt combinations for the gates in Û∆t
ε̃ , the-

orem 2 follows.
Efficiency for projective observables. – To quantify the

efficiency with which dynamics explore the set of observ-
ables, let us first focus on the case where the accessible
observable Ô is a projection operator. Examples for such
observables are Pauli measurements that are the stan-
dard choice in quantum computing and particle densities
that are typical for ultracold-atom experiments.

Let Gn,m denote the set of all rank-n projection op-
erators on an m-dimensional Hilbert space H, where in
our case m = dL. We will bound covering numbers for
Gn,m and compare them to Eqs. (1) and (4). Gn,m can
be identified with the Grassmann manifold, the space of
all n-dimensional subspaces of H, where each such sub-
space corresponds to the projection onto that subspace.
More useful for our purposes, Gn,m can also be identified
with the quotient group

Gn,m ∼= U(m)/U(n,m), (7)

where U(n,m) := U(n)×U(m−n) is the direct product
of the unitary groups U(n) and U(m − n). Eq. (7) is
due to the fact that every n-dimensional subspace H̃ of
H can be specified by a fixed reference subspace H0 of
dimension n and an element V̂ of U(m)/U(n,m) such
that

V̂ (H0 ⊕H⊥0 ) = H̃ ⊕ H̃⊥, (8)

whereH⊥0 and H̃⊥ are the orthogonal complements ofH0

and H̃ in H. Clearly, H̃⊕H̃⊥ is invariant under transfor-
mations from U(n,m), which explains the identification
(7).

Lemma 1 bounds covering numbers for unitary groups.
These can be used to bound covering numbers for
the product U(n,m) and, finally, the quotient group
U(m)/U(n,m). We obtain

1

19m2

(
7

ε

)2n(m−n)

≤ N (Gn,m, d
′, ε) ≤ 38m

2

(
3

8ε

)2n(m−n)

for covering numbers of the Grassmannians (7) with
ε ≤ 1/20. In this case, the induced quotient metric is
d′(H1,H2) = inf{‖1̂ − V̂ ‖ | V̂ ∈ U(m) with H2 = V̂H1}
for all H1,H2 ∈ Gn,m [50]. However, we are actually
interested in Gn,m, interpreted as the set of all rank-n
projection operators on H. Then the relevant metric is
not d′ but the operator norm distance ‖P̂1 − P̂2‖, where
P̂1 and P̂2 project onto H1 and H2, respectively. So, in
the final step, we relate covering numbers for (Gn,m, ‖·‖)
to those of (Gn,m, d

′) using the following lemma.

Lemma 3. Let (M1, d1) and (M2, d2) be metric spaces
and f : M1 → M2 bi-Lipschitz such that f(M1) = M2

with

d2(f(x), f(y)) ≤ Kd1(x, y) ∀x, y ∈M1 and
d2(f(x), f(y)) ≥ k d1(x, y) ∀x, y ∈M1 with d1(x, y) ≤ r.

Then, their covering numbers obey

N (M1, d1, 2ε/k) ≤ N (M2, d2, ε) ≤ N (M1, d1, ε/K),

where the left inequality requires ε ≤ kr/2.

The two relevant metrics obey the inequalities√
2 d′(H1,H2)/5 ≤ ‖P̂1 − P̂2‖ ≤ 2 d′(H1,H2) for sub-

spacesH1,H2 ∈ Gn,m and the projections P̂1 and P̂2 onto
these subspaces. Hence, we can apply lemma 3 to Gn,m
with d1 and d2 being the quotient metric and operator-
norm distance, respectively, where K = 2, k =

√
2/5,

and r = 2/5. We obtain

Theorem 3. The ε-covering numbers NG for rank-n
projection operators on an m-dimensional Hilbert space
with respect to the operator-norm distance ‖ · ‖ obey

1

19m2

(
9

5ε

)2n(m−n)

≤ NG ≤ 38m
2

(
3

4ε

)2n(m−n)

, (9)

where the lower bound is valid for ε ≤ 1/71 and the upper
one for ε ≤ 1/10.

A complete proof is given in the Supplemental Ma-
terial. The Hilbert space dimension of our many-body
systems grows exponentially in the system size, m =
dimH = dL. For the case of interest, where n and
m − n are finite fractions of m, i.e., projection opera-
tors as those of Pauli measurements (n = D/2), and
sufficiently small ε = O(1), theorem 3 states that cov-
ering numbers for Gn,m grow double-exponentially with
L, NG = exp

[
Ω(m2)

]
= exp

[
Ω(d2L)

]
. In contrast, the-

orems 1 and 2 show that, even with full control over the
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system dynamics, covering numbers for the set of evolved
observables grow only exponentially as a function of the
circuit depthNg or evolution time T , respectively. Hence,
generic projections can only be realized by implement-
ing exponential-depth quantum circuits or evolving the
system for a time T that grows exponentially with the
system size L, i.e., most projections can not be reached
with polynomial cost: If one evolves for a time T that
is polynomial in the system size, the evolved observable
necessarily ends up in one of NT balls of radius ε in op-
erator space [Eq. (4)] while we can pack an exponentially
larger number NG of disjoint ε-balls into the relevant
operator space [Eq. (9)]. So most observables have a dis-
tance larger than ε from those that can be generated by
polynomial-time dynamics.
Efficiency for generic observables. – So far, we have

only considered observables being projection operators
(w(Ô) = 1/2) and found that measuring them is in gen-
eral inefficient with respect to growing system size L. We
can easily extend this result to observables Ô that have
only two eigenvalues ω1 < ω2 with exponential degenera-
cies n andm−n = eΩ(L). As long as the spectral width is
polynomial in L, w(Ô) = ω2−ω1

2 = O(Lα) for some con-
stant α ≥ 0, theorems 1 and 2 with polynomial Ng and T
still yield exponential upper bounds on ε-covering num-
bers for observables that can be reached through evolu-
tion of a predefined reference observable. And, as long as
ω2−ω1 has an L-independent lower bound [is Ω(L0)], the-
orem 3 with sufficiently small ε (ε→ ε/|ω2 − ω1|) yields
double-exponential lower bounds on ε-covering numbers
for the set of observables with the given spectrum.

In fact, we can generalize much further:

Theorem 4. For a fixed α ≥ 0, sufficiently small
ε > 0, and every system size L, let Gω be the set of ob-
servables with some spectrum {ωk} of polynomial width
w = O(Lα). For some ω̄1 < ω̄2 with ω̄2− ω̄1 = Ω(L0), let
the ε/2-neighborhoods of ω̄1 and ω̄2 contain exponentially
many eigenvalues ωk, i.e.,

∣∣{ωk with |ωk − ω̄i| ≤ ε/2}
∣∣ =

eΩ(L). Then ε-covering numbers for Gω grow double-
exponentially in L and, generally, elements of Gω cannot
be reached through application of polynomial-depth quan-
tum circuits or polynomial-time evolution with Hamilto-
nians as characterized in theorems 1 and 2.

This is because, for every observable Ô ∈ Gω, we
can define Ô′ by replacing all eigenvalues in the ε/2-
neighborhood of ω̄i by ω̄i. So, eigenvalues ω̄1 and ω̄2

of Ô′ have exponential degeneracies n,m − n = eΩ(L).
For sufficiently small ε, theorem 3 now yields double-
exponential lower bounds on ε/2-covering numbers for
the set of operators that differ from Ô′ only in terms of
the ω̄i-eigenvectors. As ‖Ô−Ô′‖ ≤ ε/2, it follows that ε-
covering numbers for Gω also grow double-exponentially
in L.

Theorem 4 accounts for all typical classes of observ-
ables: (a) projection operators as, for example, occur-
ring in Pauli measurements, (b) observables that act in a
finite-size subspace like single-site observables Ôi or two-

FIG. 3. The results on limitations for measurements of pro-
jection operators are generalized in Theorem 4. It covers ob-
servables with a spectral width that grows polynomially with
increasing system size L, i.e., w = O(Lα) with α ≥ 0. There
necessarily exist points with an exponential density of states
g(ω) = eΩ(L). Theorem 4 applies to observables which have
two such points ω̄1,2 with distance ω̄2 − ω̄1 = Ω(L0).

site operators ÔiÔj for two-point correlation functions,
(c) extensive observables like energy etc. As a matter
of fact, observables Ô with a polynomial spectral width
w(Ô), usually obey the preconditions of theorem 4: Due
to the exponential growth of the Hilbert space with L,
the density of eigenstates for such observables grows ex-
ponentially in the bulk of the spectrum and, hence, points
ω̄1 and ω̄2 with the required properties generally exist.
Discussion. – We have found that dynamical measure-

ment schemes for observables that are not directly ac-
cessible, i.e., a controlled time evolution and subsequent
measurement of directly accessible observables, are in
general inefficient. For a predefined accuracy the required
evolution time generally increases exponentially with the
system size. Quantitative estimates can be obtained by
comparing Eqs. (1) and (4) with Eq. (9). So it is a ques-
tion of clever design to allow for the measurement of ob-
servables of interest through efficient dynamical schemes
and a suitable encoding of models in quantum simulation
protocols. This is a fruitful field for future research.

A few examples concerning quantum information
where, according to the presented results, it will be
difficult to realize required measurements efficiently for
many-body systems are the following. The goal of Hel-
strom measurements [62, 63] is to distinguish two quan-
tum states %̂1 and %̂2. The optimal observable to be
measured is the projection onto the support of the pos-
itive spectral component of %̂1 − %̂2. Another example
is quantum data compression which can be implemented
by measuring projection operators for so-called typical
subspaces when the source distribution is known [64] or
projection operators for Csiszár-Körner subspaces when
the source is unknown [65]. Compression schemes with
a cost that is polynomial in the number of copies have
been devised [66, 67], but according to our results they
will still be inefficient with respect to the system size,
even with full control over system dynamics. Projections
onto such typical subspaces are also employed for entan-
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glement distillation and dilution [68]. Similarly, we are
limited in the types of error correcting codes [69–71] and,
in particular, error syndrome measurements that can be
realized efficiently for purposes of fault-tolerant quantum
computation. Hence, some classes of errors and decoher-

ence effects (see, e.g., Refs. [72–76]) relevant for quantum
computation are harder to correct for.

TB thanks Juri Barthel, Kenneth Brown, Dripto De-
broy, and Jungsang Kim for helpful discussions. JL is
supported in part by the National Science Foundation
under grant DMS-1454939.
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