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To estimate the time, many organisms, ranging from cyanobacteria to animals, employ a circadian
clock which is based on a limit-cycle oscillator that can tick autonomously with a nearly 24h period.
Yet, a limit-cycle oscillator is not essential for knowing the time, as exemplified by bacteria that
possess an “hourglass”: a system that when forced by an oscillatory light input exhibits robust
oscillations from which the organism can infer the time, but that in the absence of driving relaxes
to a stable fixed point. Here, using models of the Kai system of cyanobacteria, we compare a limit-
cycle oscillator with two hourglass models, one that without driving relaxes exponentially and one
that does so in an oscillatory fashion. In the limit of low input noise, all three systems are equally
informative on time, yet in the regime of high input-noise the limit-cycle oscillator is far superior.
The same behavior is found in the Stuart-Landau model, indicating that our result is universal.

PACS numbers: 87.10.Vg, 87.16.Xa, 87.18.Tt

INTRODUCTION

Many organisms, ranging from animals, plants, in-
sects, to even bacteria, possess a circadian clock, which
is a biochemical oscillator that can tick autonomously
with a nearly 24h period. Competition experiments on
cyanobacteria have demonstrated that these clocks can
confer a fitness benefit to organisms that live in a rhyth-
mic environment with a 24h period [1, 2]. Clocks enable
organisms to estimate the time of day, allowing them to
anticipate, rather than respond to, the daily changes in
the environment. While it is clear that circadian clocks
which are entrained to their environment make it possi-
ble to estimate the time, it is far less obvious that they
are the only or best means to do so [3, 4]. The oscillatory
environmental input could, for example, also be used to
drive a system which in the absence of any driving would
relax to a stable fixed point rather than exhibit a limit
cycle. The driving would then generate oscillations from
which the organism could infer the time. It thus remains
an open question what the benefits of circadian clocks
are in estimating the time of day.

This question is highlighted by the timekeeping mech-
anisms of prokaryotes. While circadian clocks are ubiqui-
tous in eukaryotes, the only known prokaryotes to possess
circadian clocks are cyanobacteria, which exhibit photo-
synthesis. The best characterized clock is that of the
cyanobacterium Synechococcus elongatus, which consists
of three proteins, KaiA, KaiB, and KaiC [5]. The central
clock component is KaiC, which forms a hexamer that is
phosphorylated and dephosphorylated in a cyclical fash-
ion under the influence of KaiA and KaiB. This phospho-
rylation cycle can be reconstitued in the test tube, form-
ing a bonafide circadian clock that ticks autonomously
in the absence of any oscillatory driving with a period
of nearly 24 hours [6]. However, S. elongatus is not
the only cyanobacterial species. Prochlorococcus marinus
possesses kaiB and kaiC, but lacks (functional) KaiA. In-

terestingly, this species exhibits daily rhythms in gene ex-
pression under light-dark (LD) cycles but not in constant
conditions [7, 8]. Recently, Johnson and coworkers made
similar observations for the purple bacterium Rhodopseu-
domonas palustris, which harbors homologs of KaiB and
KaiC. Its growth rate depends on the KaiC homolog in
LD but not constant conditions [4], suggesting that the
bacterium uses its Kai system to keep time. Moreover,
this species too does not exhibit sustained rhythms in
constant conditions, but does show daily rhythms in e.g.
nitrogen fixation in cyclic conditions. P. marinus and R.
palustris thus appear to keep time via an “hourglass”
mechanism that relies on oscillatory driving [4, 7, 8].
These observations raise the question why some bacte-
rial species like S. elongatus have evolved a bonafide clock
that can run freely, while others have evolved an hour-
glass timekeeping system.

Troein et al. studied the evolution of timekeeping sys-
tems in silico [9]. They found that only in the presence
of seasonal variations and stochastic fluctuations in the
input signal did systems evolve that can also oscillate au-
tonomously. However, organisms near the equator have
evolved self-sustained oscillations [4], showing that sea-
sonal variations cannot be essential. Pfeuty et al. sug-
gest that limit-cycle oscillators have evolved because they
enable timekeepers that ignore the uninformative light-
intensity fluctuations during the day (corresponding to a
deadzone in the phase-response curve), yet selectively re-
spond to the more informative intensity changes around
dawn and dusk [10].

Here, we hypothesize that the optimal design of the
readout system that maximizes the reliability by which
cells can estimate the time depends on the noise in the
input signal. To test this idea, we study three differ-
ent network designs from which the cell can infer time
(Fig. 1): 1) a simple push-pull network (PPN), in which
a readout protein switches between a phosphorylated and
an unphosphorylated state (Fig. 1A). Because the phos-
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FIG. 1: Overview different timekeeping systems. (A) A push-pull network (PPN). Each protein can switch between a phos-
phorylated and an unphosphorylated state, and the input signal enhances the phosphorylation rate. In the absence of driving,
the PPN relaxes exponentially to a steady state (middle panel). Yet, in the presence of an oscillatory input, e.g. sunlight, the
system exhibits oscillations from which the time can be inferred (lower panel). (B) The uncoupled-hexamer model (UHM),
inspired by the Kai system of P. marinus. It consists of KaiC hexamers which can switch between an active state in which the
phosphorylation level tends to rise and an inactive one in which it tends to fall. The phosphorylation rate is, via changes in the
ATP/ADP ratio, enhanced by the light input [11, 12]. The system is akin to a harmonic oscillator, with an intrinsic frequency
ω0, resulting from the hexamer phosphorylation cycle. However, the hexamers are not coupled via KaiA as in the CHM shown
in panel C, so it cannot sustain autonomous oscillations; in the absence of driving, it relaxes in an oscillatory fashion to a
stable fixed point (middle panel). (C) The coupled-hexamer model (CHM), inspired by the Kai system of S. elongatus. Like
the UHM, it consists of KaiC hexamers, which tend to be phosphorylated cyclically. However, in contrast to the UHM, the
hexamers are synchronized via KaiA, such that the system can exhibit limit-cycle oscillations in the absence of driving (middle
panel). In all models, time is estimated from the protein phosphorylation fraction p(t).

phorylation rate increases with the light intensity, the
phosphorylation level oscillates in the presence of oscil-
latory driving, enabling the cell to estimate the time.
This network lacks an intrinsic oscillation frequency, and
in the absence of driving it relaxes to a stable fixed
point in an exponential fashion; 2) an uncoupled hex-
amer model (UHM), which is inspired by the Kai system
of P. marinus (Fig. 1B). This model consists of KaiC hex-
amers which each have an inherent propensity to proceed
through a phosphorylation cycle. However, the phospho-
rylation cycles of the hexamers are not coupled among
each other, and without a common forcing the cycles
will therefore desynchronize, leading to the loss of macro-
scopic oscillations. In contrast to the proteins of the
PPN, each hexamer is a tiny oscillator with an intrinsic
frequency ω0, which means that an ensemble of hexam-
ers that has been synchronized initially, will, in the ab-
sence of driving, relax to its fixed point in an oscillatory
manner. 3) a coupled hexamer model (CHM), which is

inspired by the Kai system of S. elongatus (Fig. 1C). As
in the previous UHM, each KaiC hexamer has an intrin-
sic capacity to proceed through a phosphorylation cycle,
but, in contrast to that system, the cycles of the hexam-
ers are coupled and synchronized via KaiA, as described
further below. Consequently, this system exhibits a limit
cycle, yielding macroscopic oscillations with intrinsic fre-
quency ω0 even in the absence of any driving.

Here we are interested in the question how the preci-
sion of time estimation is limited by the noise in the input
signal, and how this limit depends on the architecture of
the readout system. We thus focus on the regime in which
the input noise dominates over the internal noise [13] and
model the different systems using mean-field (determin-
istic) chemical rate equations. In [14], we also consider
internal noise, and show that, at least for S. elongatus,
the input-noise dominated regime is the relevant limit.

The chemical rate equation of the PPN is: ẋp =
kfs(t)(xT−xp(t))−kbxp(t), where xp(t) is the concentra-
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tion of phosphorylated protein, xT is the total concentra-
tion, kfs(t) is the phosphorylation rate kf times the input
signal s(t), and kb is the dephosphorylation rate. The un-
coupled (UHM) and coupled (CHM) hexamer model are
based on the Kai system [15–22]. In both models, KaiC
switches between an active conformation in which the
phosphorylation level tends to rise and an inactive one
in which it tends to fall [15, 20]. Experiments indicate
that the main Zeitgeber is the ATP/ADP ratio [11, 12],
meaning the clock predominantly couples to the input
s(t) during the phosphorylation phase of the oscillations
[11, 22]. In both the UHM and the CHM, s(t) therefore
modulates the phosphorylation rate of active KaiC. The
principal difference between the UHM and CHM is KaiA:
(functional) KaiA is absent in P. marinus and hence in
the UHM [7, 8]. In contrast, in S. elongatus and hence
the CHM, KaiA phosphorylates active KaiC, yet inactive
KaiC can bind and sequester KaiA. This gives rise to the
synchronisation mechanism of differential affinity [14–16].
In all three models, the input is modeled as a sinusoidal
signal with mean s̄ and driving frequency ω = 2π/T plus
additive noise ηs(t): s(t) = sin(ωt) + s̄+ ηs(t). The noise
is uncorrelated with the mean signal, and has strength
σ2
s and correlation time τc, 〈ηs(t)ηs(t′)〉 = σ2

se
−|t−t′|/τc .

A detailed description of the models is given in [14].
As a performance measure for the accuracy of estimat-

ing time, we use the mutual information I(p; t) between
the time t and the phosphorylation level p(t) [13, 23]:

I(p; t) =

∫ T

0

dt

∫ 1

0

dpP (p, t) log2

P (p, t)

P (p)P (t)
. (1)

Here P (p, t) is the joint probability distribution while
P (p) and P (t) = 1/T are the marginal distributions of
p and t. The quantity 2I(p;t) corresponds to the number
of time points that can be inferred uniquely from p(t);
I(p; t) = 1bit means that from p(t) the cell can reliably
distinguish between day and night [24]. The distribu-
tions are obtained from running long simulations of the
chemical rate equations of the different models [14].

For each system, to maximize the mutual information
we first optimized over all parameters except the cou-
pling strength. For the CHM, the coupling strength ρ
was taken to be comparable to that of S. elongatus [14],
and for the PPN and the UHM ρ was set to an arbitrary
low value, because in the relevant weak-coupling regime
the mutual information is independent of ρ, as elucidated
below and in [14]. For the PPN, there exists an optimal
response time τr ∼ 1/kb that maximizes I(p; t), arising
from a trade-off between maximizing the amplitude of
p(t), which increases with decreasing τr, and minimizing
the noise in p(t), which decreases with increasing τr be-
cause of time averaging [14, 25]. Similarly, for the UHM,
there exists an optimal intrinsic frequency ω0 of the in-
dividual hexamers. The UHM is linear and similar to a
harmonic oscillator. Analyzing this system shows that
while the amplitude A of the output x(t) is maximized

FIG. 2: The mutual information I(p; t) as a function of the
input-noise strength σ2

s , for the push-pull network (PPN), the
uncoupled-hexamer model (UHM) and the coupled-hexamer
model (CHM), see Fig. 1. In the limit of low input noise,
all systems are equally informative on time, but in the high-
noise regime the CHM is most accurate. The parameters have
been optimized to maximize I(p; t); since these are (nearly)
independent of σ2

s (Figs.S1-S3), they are fixed (Table S1 [14]).

at resonance, ω0 → ω, the standard deviation σx of x is
maximized when ω0 → 0, such that the signal-to-noise
ratio A/σx peaks for ω0 > ω [14]. Interestingly, also the
CHM exhibits a maximum in A/σx for intrinsic frequen-
cies that are slightly off-resonance [14].

Fig. 2 shows the mutual information I(p; t) as a func-
tion of the input-noise strength σ2

s for the three systems.
In the regime that σ2

s is small, I(p; t) is essentially the
same for all systems. However, the figure also shows that
as σ2

s rises, I(p; t) of the UHM and especially the PPN
decrease very rapidly, while that of the CHM falls much
more slowly. For σ2

s ≈ 3, I(p; t) of the CHM is still above
2 bits, while I(p; t) of the PPN and UHM have already
dropped below 1 bit, meaning the cell would no longer
be able to distinguish between day and night. Indeed,
this figure shows that in the regime of high input noise,
a bonafide clock that can tick autonomously is a much
better time-keeper than a system which relies on oscil-
latory driving to show oscillations. This is the principal
result of our paper. It is observed for other values of τc
and other types of input, such as a truncated sinusoid
corresponding to no driving at night (Fig. S6 [14]).

The robustness of our observation that bonafide clocks
are more reliable timekeepers, suggests it is a univer-
sal phenomenon, independent of the details of the sys-
tem. We therefore analyzed a generic minimal model,
the Stuart-Landau model. It allows us to study how the
capacity to infer time changes as a system is altered from
a damped (nearly) linear oscillator, which has a charac-
teristic frequency but cannot sustain oscillations in the
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FIG. 3: The mutual information I(p; t) as a function of α
of the Stuart-Landau model (Eq. 2), for different strengths
of the input noise σ2

s . Clearly, I(p; t) rises as the system is
changed from a damped oscillator like the UHM (α < 0) to
a limit-cycle oscillator like the CHM (α > 0). Moreover, the
increase is most pronounced when σ2

s is large, as also observed
for the UHM and CHM, see Fig. 2. Parameters: ν = 0; β = ω;
ε = 0.5ω; σ2

s in units of ω−1.

absence of driving, to a non-linear oscillator that can
sustain autonomous oscillations [14]. Near a Hopf bi-
furcation where a limit cycle appears the effect of the
non-linearity is weak, so that the solution x(t) is close to
that of a harmonic oscillator, x(t) = 1/2(A(t)eiωt + c.c.),
where A(t) is a complex amplitude that can be time-
dependent [26]. The dynamics of A(t) is then given by

Ȧ = −iνA+ αA− β|A|2A− εE, (2)

where ν ≡ (ω2−ω2
0)/(2ω) with ω0 the intrinsic frequency,

α and β govern the linear and non-linear growth and de-
cay of oscillations, E is the first harmonic of s(t) and
ε ≡ ρ/(2ω) is the coupling strength. Eq. 2 gives a uni-
versal description of a driven weakly non-linear oscillator
near a supercritical Hopf bifurcation [26].

The non-driven system exhibits a Hopf bifurcation at
α = 0. By varying α we can thus change the system
from a damped oscillator (α < 0) which in the absence of
driving exhibits oscillations that decay, to a limit-cycle
oscillator (α > 0) that shows free-running oscillations.
The driven damped oscillator (α < 0) always has one
stable fixed point with |A| > 0 corresponding to sinu-
soidal oscillations that are synchronized with the driv-
ing. The driven limit-cycle oscillator (α > 0), however,
can exhibit several distinct dynamical regimes [26]. Here,
we limit ourselves to the case of perfect synchronization,
where x(t) has a constant amplitude A and phase shift
with respect to s(t).

To compute I(x, t), we use an approach inspired by
the linear-noise approximation [13]. It assumes P (x|t) is

a Gaussian distribution with variance σ2
x(t) centered at

the deterministic solution x(t) = 1/2(Aeiωt+c.c.), where
A is obtained by solving Eq. 2 in steady state. To find
σ2
x, we first compute σ2

A from Eq. 2 by adding Gaussian
white-noise of strength σ2

s to E and expanding A to linear
order around its fixed point; σ2

x(t) is then obtained from
σ2
A via a coordinate transformation [14].

Fig. 3 shows the mutual information I(x; t) as a func-
tion α, for different values of σ2

s . The figure shows that
I(x; t) rises as the system is changed from a damped os-
cillator (α < 0) to a self-sustained oscillator (α > 0).
Moreover, the increase is most pronounced when the in-
put noise σ2

s is large. The Stuart-Landau model can thus
reproduce the qualitative behavior of our computational
models, indicating that our principal result is generic.
Interestingly, for the parameter set chosen, the CHM is
even more robust than the Stuart-Landau model, per-
haps because the latter is only weakly non-linear [14].

To understand why limit-cycle oscillators are more ro-
bust to input noise, we study in section SIIE [14] ana-
lytical models valid in the limit of weak coupling. For a
damped oscillator with a fixed-point attractor (PPN and
UHM), we find that the amplitude A of the harmonic os-
cillations (the signal) increases with the coupling strength
ρ, A ∼ ρ. The noise in the output signal σx scales with
ρ too, σx ∼ ρ, because the coupling amplifies not only
the input signal, but also the input noise. Hence, the
signal-to-noise ratio A/σx is independent of ρ: an oscil-
lator based on a fixed-point attractor faces a fundamental
trade-off between gain and input noise (section SIIE [14]).
A limit-cycle oscillator (CHM) can lift this trade-off: The
oscillation amplitude is a robust, intrinsic property of the
system, and essentially independent of ρ. The output
noise σx ∼

√
ρ, because the coupling not only ampli-

fies the input noise proportional to ρ, but also generates
a restoring force that constrains fluctuations, scaling as
∼ √ρ (SIIE [14]). Hence, A/σx ∼ 1/

√
ρ. These scaling

arguments show that: 1) concerning robustness to input
noise, the optimal regime is the weak-coupling regime; 2)
in this regime, a limit-cycle oscillator is generically more
robust to input noise than a damped oscillator. While
both oscillators minimize input-noise propagation in this
regime, only the limit-cycle oscillator still exhibits a ro-
bust amplitude when coupled weakly to the input.

Yet, the coupling cannot be reduced to zero for limit-
cycle oscillators. When the intrinsic clock period devi-
ates from 24h, as it typically will, coupling is essential to
phase-lock the clock to the driving signal [13]. Moreover,
biochemical networks inevitably have some level of inter-
nal noise (section SIIF [14]). For the damped oscillator,
the output noise σx resulting from internal noise is inde-
pendent of ρ, but since A increases with ρ, A/σx ∼ ρ in
the presence of internal noise only: coupling helps to lift
the signal above the internal noise. For the limit-cycle os-
cillator, the restoring force ∼ √ρ tames phase diffusion,
such that in the presence of only internal noise, the out-
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put noise σx ∼ 1/
√
ρ and A/σx ∼

√
ρ. Hence, also with

regards to internal noise, a limit-cycle oscillator is supe-
rior to a damped oscillator in the weak-coupling regime.
This analysis also shows, however, that this regime is
not necessarily optimal, since with only internal noise
present A/σx increases with ρ. In fact, it predicts that in
the strong-coupling regime the damped oscillator outper-
forms the limit-cycle oscillator. We emphasize, however,
that in this regime our weak-coupling analysis breaks
down and other effects come into play; for example, non-
linearities arising from the bounded character of p(t) dis-
tort the signal, reducing information transmission.

In the presence of both noise sources, we expect an op-
timal coupling that maximizes information transmission
(SIIF [14]). For the limit-cycle oscillator the optimum
arises from the trade-off between minimizing input-noise
propagation and maximizing internal-noise suppression.
For the damped oscillator, A/σx first rises with ρ be-
cause coupling helps to lift the signal above the internal
noise, but then plateaus when the input noise (which
increases with ρ) dominates over the internal noise; for
even higher ρ, it decreases again because of signal distor-
tion. In section SIE [14] we verify these predictions for
our computational models using stochastic simulations.

Experiments have shown that the clock of S. elongatus
has a strong temporal stability with a correlation time
of several months [27], suggesting that the internal noise
is small. Indeed, typical input-noise strengths based on
weather data [28] and internal-noise strengths based on
protein copy numbers in S. elongatus [29] indicate that
in the biologically relevant regime, at least for cyanobac-
teria, input noise dominates over internal noise (Fig. S5
[14]). In this regime, the focus of our paper, the optimal
coupling is weak and limit-cycle oscillators are generically
more robust to input noise than damped oscillators.

This work is part of the research programme of the
Netherlands Organisation for Scientific Research (NWO)
and was performed at AMOLF. DKL acknowledges NSF
grant DMR 1056456 and grant PHY 1607611 to the As-
pen Center for Physics, where part of this work was com-
pleted. We thank Jeroen van Zon and Nils Becker for a
critical reading of the manuscript.

Note added in Proofs: The study of Ref. [30] inde-
pendently arrived at the conclusion that clocks based on
limit-cycle oscillators are more robust to input noise.
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