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Periodically driven Kitaev chains show a rich phase diagram as the amplitude and frequency of
the drive is varied, with topological phase transitions separating regions with different number of
Majorana zero and π modes. We explore whether the critical point separating different phases of
the periodically driven chain may be characterized by a universal central charge. We affirmatively
answer this question by studying the entanglement entropy (EE) numerically, and analytically for
the lowest entangled many particle eigenstate at arbitrary non-stroboscopic and stroboscopic times.
We find that the EE at the critical point scales logarithmically with a time-independent central
charge, and that the Floquet micro-motion gives only sub-leading corrections to the EE. This result
also generalizes to multi-critical points where the EE is found to have a central charge which is the
sum of the central charges of the intersecting critical lines.

Periodic or Floquet driving has opened up new avenues
of engineering correlated quantum systems with behavior
qualitatively different from static systems [1, 2]. As in
equilibrium, we wish to have universal descriptions of
driven systems that do not depend on microscopic details.
In equilibrium, critical states of matter possess a scale-
invariance that leads to such universal descriptions. In
one dimension (1D) static systems, this critical behavior
can be captured by conformal field theories (CFTs) [3,
4]. Do such universal descriptions exist for 1D Floquet
systems?

To address this question, we study a 1D Floquet sys-
tem, the periodically driven Kitaev chain with near-
est neighbor (nn) and next nearest neighbor (nnn) cou-
plings [5–7]. The static Kitaev chain has a Z2 invari-
ant, which is enlarged to a Z invariant with time rever-
sal symmetry (TRS). With driving, the system shows a
rich phase diagram as the amplitude and frequency of
the drive is varied, with topological phase transitions
separating regions with different number of Majorana
modes [8]. Moreover, the topological phases of the Flo-
quet system is enhanced to Z × Z [9–13].

A universal characteristic of CFTs is the their entan-
glement entropy (EE) [4]. Further, entanglement spec-
tra (ES) (i.e, eigenvalues of the reduced density matrix)
show an analogue of the bulk-boundary correspondence
of topological systems [14, 15], and are also sensitive
to criticality [16, 17]. In this paper we explore the EE
and ES of driven Floquet states. These quantities have
the advantage that unlike thermodynamic quantities, the
EE [18] and ES extend naturally to non-equilibrium and
driven systems, indeed to any quantum state. However,
there are several subtleties in thinking about the ES in
the Floquet setting. The ES is a set of levels that span
a range determined by occupation probability of states,
and thus has essentially the same appearance as the en-
ergy spectrum of a static Hamiltonian. However, in Flo-
quet systems, energy is not conserved up to integer mul-
tiples of the drive frequency, so that the conserved quasi-

energy is periodic. Thus while there is one kind of zero-
mode in a static Hamiltonian and in the corresponding
ES, there are two kinds of such modes in a Floquet sys-
tem: 0 and π modes. Since the ES is not periodic, there
is no clear analog of the π-mode in the ES [8, 19].

A further wrinkle is that the Z×Z topological invariant
and the quasi-energy spectrum are properties of the full
drive cycle, while the ES and EE are constructed from the
instantaneous quantum state. They are therefore sensi-
tive to which point in the drive cycle they are calculated.
Thus there is a conflict - one would expect that the ES
and EE would carry information about the topological
invariants, however they are sensitive to within-cycle dy-
namics (also known as Floquet micro-motion) which are
not universal.

Thus it is unclear whether the critical points separat-
ing different Floquet phases have any universal, time-
independent description in terms of the EE, as static
critical points do. In this paper we find that the Flo-
quet critical points do have a universal form for the EE,
despite the micro-motion. In fact they have precisely the
same scaling law S ∼ c

3 logL as the static system, where
c is time-independent, and depends on the number of 0
and π modes. We also find equivalent behavior at multi-
critical points separating more than two phases [20].

We study the Kitaev chain with nn (th,∆) and nnn
(t′h,∆

′) tunneling and pairing interactions. In terms of
the complex fermion ci and its Fourier transform ck the
Hamiltonian is,

H =
∑
i

[
−thc†i ci+1 −∆(t)c†i c

†
i+1 − µ(t)

(
c†i ci −

1

2

)
−t′hc

†
i ci+2 −∆′(t)c†i c

†
i+2 + h.c.

]
=
∑
k

(
c†k c−k

)
HBdG(k, t)

(
ck
c†−k

)
. (1)

The periodic driving may be applied to the chemical
potential (µ) or one or both of the pairing amplitudes
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(∆,∆′). The results do not depend on which parameter
is varying in time.

In momentum space, the Hamiltonian is HBdG(k, t) =

−~d(k, t) · ~σ, where dx(k, t) = 0, dy(k, t) = ∆(t) sin(k) +
∆′(t) sin(2k), dz(k, t) = th cos(k) + t′h cos(2k) + µ(t)/2.
For the numerical demonstrations, we drive both ∆ and
∆′, keeping µ static. In units of th = 1, the parameters
used are, ∆(t) = ∆ + 4 sin(Ωt), ∆′(t) = ∆′ + 4 sin(Ωt),
t′h = −2,∆ = 1,∆′ = −2,Ω = 12.

The static Hamiltonian falls in the BDI classifica-
tion [21] with an integer Z characterizing the number
of Majorana zero modes. This also equals the number
of times the spinor ~d(k)/|~d(k)| winds in the y-z plane in
momentum space. Fig. 1 describes the static system. As
µ is tuned, the system shows several topological phases.
These phases are distinguished by the number of Majo-
rana zero modes in the energy spectrum (top panel) and
the ES (middle panel). In addition the critical points sep-
arating the topological phases are characterized by an EE
that scales as (bottom panel) S = (c/3) logL, where L
is the size of the sub-system associated with the reduced
density matrix, and c is the central charge. For a critical
point separating a phase with Z Majorana modes from
one with Z ′ Majorana modes, the numerically extracted
central charge is c = |Z − Z ′|/2 [22]. In this paper we
wish to understand how this fundamental result for the
scaling of the EE of critical static phases, generalizes to
critical Floquet phases.

In particular we are interested in the entanglement
scaling of the Floquet ground state (FGS) which is a half-
filled many-body eigenstate of the Floquet Hamiltonian
HF = H(t)− i∂t. This eigenstate is a Slater determinant
of the time periodic Floquet modes |φ(k, t)〉, defined as
the eigenmodes of HF , HF |φ(k, t)〉 = εk|φ(k, t)〉. εk are
the quasi-energies, and are restricted within a Floquet
Brillouin zone (FBZ) of size Ω [23, 24]. The half-filled
state corresponding to the FGS is such as to ensure area
law scaling of the EE when the system has a gap in the
quasi-energy spectrum. Concretely, restricting the quasi-
energy spectrum to lie between −Ω/2,Ω/2, and noting
that chiral symmetry of the Floquet Hamiltonian causes
the quasi-energy spectra to come in pairs of ±|εk|, the
FGS corresponds to occupying with probability 1 all Flo-
quet modes with say negative quasi-energy. This should
be contrasted with a half-filled state obtained from uni-
tary time-evolution under H(t) from an arbitrary initial
state, where such a state will show volume law scaling of
the EE at steady-state [8, 19].

We briefly explain how the ES and EE are studied
numerically and analytically. The underlying principle
is that for a system of free fermions, the eigenvalues of
the reduced density matrix can be extracted from the
eigenvalues of only the two-point correlation function, a
consequence of Wick’s theorem [25, 26]. The relevant

FIG. 1: Static system, all plotted against µ. Top panel,
the energy levels of a wire with length L = 75. Middle
panel, the ES for an entanglement cut of length L = 75
with periodic boundary conditions applied to the full

density matrix. Bottom panel, the EE of the same. The
insets in the bottom panel show how the EE (or S) at
the critical points scale with L with 400 ≤ L ≤ 600.

correlation matrix for our half-filled state is

Gi,j(t) =

∫ π

−π

dk

2π
eik(i−j)Mk(t), (2)

where i, j index the physical sites within the entangle-
ment cut,M is a 2×2 matrix which for the static ground
state and FGS are respectively,

Mk,static =
~d(k) · ~σ
|d(k)|

;Mk,FGS(t) = 〈φ(k, t)|~σ|φ(k, t)〉 · ~σ.

(3)

Gij is a hermitian matrix whose expansion in terms of
Pauli matrices implies that eigenvalues come in pairs±λi,
giving an EE,

S = −1

2

∑
α=±,λi

[(
1− αλi

2

)
ln

(
1− αλi

2

)]
. (4)

The Majorana modes in the ES are pinned exactly at
zero entanglement energies (middle panel, Fig. 1).

There are some key differences between static and Flo-
quet topological phases. In the presence of Floquet driv-
ing, the definition of TRS is subtle. There are two TRS
points t∗ within a cycle where the Hamiltonian obeys
H(t+ t∗) = H(−t+ t∗) for all t. For our drive, these are
t∗ = π/2Ω, 3π/2Ω.
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FIG. 2: Floquet system, all plotted against µ. Top
panel, the quasi-energy levels of the wire with size

L = 50. The π modes are visible at the FBZ boundary
|ε| = Ω/2 = 6 for µ > 10. Middle panel, the ES at

several different times within a period (different solid
lines) for an entanglement cut of size L = 50. Strongest

time-dependence are at zero entanglement energies.
Bottom panel, the corresponding time dependent EE

(solid lines are for different times within a period). The
insets in the bottom panel show how the EE(or S) at
the critical points scale with L with 400 ≤ L ≤ 600.
The leading logarithmic contribution at the critical

points is time-invariant.

The quasi-energy spectrum hosts Majorana modes that
are either pinned at zero quasi-energy, or at the Floquet
zone boundaries. We will denote the former as Majo-
rana zero modes (MZM), and the latter by Majorana π
modes (MPM). The Floquet phase is now characterized
by Z0×Zπ where Z0(Zπ) refers to the number of MZMs
(MPMs). Fig. 2 (top panel) displays the quasi-energy
levels for the time periodic chain. As µ is increased, sev-
eral transitions are visible, going from trivial to 2MZM
to 1MZM to trivial to 2MPM.

Since quasi-energies are not sensitive to the micro-
motion, while EE and ES are, this leads to some am-
biguity between the topological characterization via the
quasi-energy, and that from the entanglement. The topo-

FIG. 3: Discontinuities in Mk(t) for the FGS, for
several times during a driving period (different solid

lines) and at two different critical µ. The discontinuities
send the Bloch-vector to the opposite side of the sphere
at all times, with the orientation of the jump varying in
time. Number of discontinuous eigenvalues of Mk are
NT = 4 (top) and NT = 2 (bottom). The discontinuities
in the σx projection are difficult to see. Away from the

critical µ values (not shown), all the projections are
continuous.

FIG. 4: Phase diagram of the prefactor to log(L) in the
EE scaling for the FGS, as a function of µ and Ω. The

multi-critical point separates the four phases
(Z0, Zπ) = (0, 0), (1, 0), (1,−2), (0,−2). The leading

logarithmic scaling at the critical lines and multi-critical
point are time independent.

logical phase transitions are visible in the ES (middle
panel) in a different way. Firstly the ES is characterized
by a single gap, and all edge modes have to lie in this
gap. In addition, the winding of the Floquet states in
momentum space is strictly speaking well-defined only
at the two TRS times. At other times of the drive, the
Floquet modes acquire a non-zero projection along all
three directions x̂, ŷ, ẑ so that the winding is ill-defined.
This leads to an ES where the Majorana zero (entan-
glement) energy modes appear only at the two discrete
times t∗ in the ES, while at other times the Majorana
modes on the same sides of the entanglement cut couple
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to each other forming complex fermions. Although these
complex fermions are still localized at the entanglement
cuts, their entanglement energies are no longer pinned at
zero. Thus while at the two TRS times, the number of
Majorana modes in the ES are |Z0±Zπ| respectively [27],
at other times, the ES shows a Z2 invariance. The rea-
son for Z2 is that if there are an odd number of Majorana
modes at an entanglement cut, one unpaired Majorana
mode persists when t 6= t∗. This physics is highlighted
in Fig. 2 (middle-panel) where the ES through a series
of topological phases obtained from varying µ are shown
at several different times of the drive cycle. The time-
dependence is the strongest at zero entanglement ener-
gies [27], with the zero modes appearing only at special
times t∗.

What is remarkable is that the EE (bottom panel
Fig. 2) constructed out of this ES, despite the fact that
the zero modes exist at only two discrete times during
a cycle, still scales logarithmically at the critical points
with a time independent central charge. Note that at
all points including the critical points, the EE is time
dependent. This makes the time-independent central
charge non-trivial. The time-dependence from micro-
motion only gives sub-leading corrections, in size of the
entanglement cut L, to the EE at the critical point. In
contrast, away from the critical points, due to the pres-
ence of the gap, area law holds. In this case, the micro-
motion affects the EE to leading order. This is apparent
in the bottom panel of Fig. 2 where the time-dependence
of the EE is largest away from the critical points.

Ref. [27] shows how the EE scales as one crosses the
several topological phases as a function of time and
system-size. Irrespective of the micro-motion, the en-
tanglement scales as in a static critical phase, but with a
modified central charge,

c =

(
|Z0 − Z ′0|+ |Zπ − Z ′π|

)
/2 , (5)

with any deviations from the above decreasing with mo-
mentum space resolution.

We explain this robust central charge as follows. The
logarithmic scaling originates from a discontinuity in the
matrix Mk. For example, for non-interacting complex
fermions (∆ = ∆′ = 0), Mk is a scalar with a step-
function at the Fermi momentum. This leads to a power-
law Gij ∼ 1/|i − j| in the correlation function, and an
EE that scales with (1/3) lnL, and hence c = 1 [28, 29].
For the BdG Hamiltonians under consideration here,
the discontinuity is reflected in special k points where
the dispersion ε(k∗) = 0, and M(k∗+) 6= M(k∗−)[30].
For example, for ∆′ = 0, t′h = 0, th = ∆, µ = 2th,

Mk = cos(k/2)
| cos(k/2)| [cos(k/2)σz + sin(k/2)σy]. The disper-

sion vanishes at k∗ = π, and around this point Mk has
the discontinuityM(π+) = σy,M(π−) = −σy. This dis-
continuity gives rise to power-law correlations in position,

and a corresponding EE which scales as S = (c/3) lnL
with c = 1/2 [27].

Consider another example with nnn terms that can
give rise to multiple Majorana modes. For ∆ = ∆′ =

th = t′h, µ = 2th, Mk = 1+2 cos(k)
|1+2 cos(k)| [cos(k)σz + sin(k)σy].

The dispersion now vanishes at two points in momentum
space corresponding to k∗ = ±2π/3. Across these k∗,
the Mk are discontinuous as follows, M(k∗+) = σy =
−M(k∗−). Each of these points gives a central charge of
1/2, implying a total central charge of c = 1. Thus quite
simply, the total central charge is c = NT /4 where NT is
the number of discontinuous eigenvalues ofMk. Ref. [27]
demonstrates these discontinuities at the critical points
of the static system shown in Fig. 1.

Similar to the static case, the central charge of the
Floquet system follows from the nature of the disconti-
nuities in the Mk,FGS. Fig. 3 (and Ref. [27]) shows that
despite the micro-motion of the Floquet states, Mk,FGS

maintains a time-independent jump across momenta k∗

at which the quasi-energy vanishes. This fact holds for
both changes in Z0 and/or Zπ at the transition. The
origin of the discontinuity is that the FGS is constructed
from “filling” all quasi-energy levels of the same band, in-
troducing a “Fermi” point in momentum space. This dis-
continuity can again be indexed by the number of discon-
tinuous eigenvalues NT . Fig. 3 plots Mk,FGS projected
onto the Pauli matrices for many times during the drive
cycle, and for several different Floquet critical points.
We find that NT = 2 (|Z0 − Z ′0|+ |Zπ − Z ′π|). The time-
dependence only changes the location of the jump on the
Bloch sphere. While clearly the leading scaling of the
EE is like that of a static critical theory with a well de-
fined central-charge, yet the EE does show periodicity in
time. This periodic behavior only affects the sub-leading
behavior in the EE at the critical point.

We now give analytic arguments for the numerical re-
sults. Expanding around k = k∗ where the dispersion
vanishes, and therefore Mk is singular, we write,

Mk,FGS '
(k − k∗)
|k − k∗|

σ1(t) + ~gk(t) · ~σ, (6)

where σ1(t) = n̂(t) · ~σ with n̂ a unit vector. The dis-
continuous prefactor contains the physics of the “Fermi”-
point associated with the FGS. In contrast ~gk is a smooth
function of k. The time-dependence of ~gk, σ1 are due
to Floquet micro-motion. In the static problems [31],
σ1 = σy. Regardless of the value of σ1(t), as one crosses
k∗, the matrix jumps from σ1 to −σ1, and NT = 2 at
all times. Eq. (6) is valid whether we have jumps in Z0

and/or Zπ, where the difference between the two kinds
of modes is encoded in the micro-motion i.e, the precise
time-dependence of σ1(t), g(t).
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The Fourier transform of Eq. (6) is

Gij(t) ∼ i
eik

∗(i−j)

π(i− j)
σ1(t)

+~gk=0(t) · ~σδ(i− j) + ~g′k=0(t) · ~σδ′(i− j) + . . . . (7)

Thus the smooth function ~gk gives only short ranged cor-
relations. The discontinuity at k = k∗, despite the oscil-
lation eik

∗(i−j) gives [27] logarithmic scaling of the EE.
When there are many “Fermi” points, the EE from each
singular point combines additively. Note that one can-
not rule out non-topological gap closings, in which case
Eq. (5) provides a lower bound.

Floquet micro-motion only affects short distance corre-
lations because the micro-motion is over a time t ≤ Ω−1,
and is therefore associated with a finite spatial range
th/Ω in units of the lattice spacing. This short distance
physics cannot affect the power-law tail of Eq. (7) which
extends over arbitrary long distances. However when the
system is gapped, and the correlations are short-ranged,
then the micro-motion is the leading correction, giving a
strong time-dependence to the EE (Fig. 2).

The richness of phases under periodic drive leads not
only to critical points separating two different phases, but
also multi-critical points. Fig. 4 shows a multi-critical
point separating four phases. This multi-critical point is
the meeting point of two critical lines, and is associated
with a central charge c = c1 + c2, where c1,2 are the
central charges of the two intersecting critical lines. For
the example shown, c = 3/2 = 1 + 1/2.

We have shown that a critical (multi-critical) point
separating two (or more) Floquet phases, despite the
time-dependence has a universal behavior for the EE,
namely that it scales as (c/3) lnL where the central
charge accounts for MZMs and MPMs (Eq. (5)). The
time-dependence due to micro-motion gives sub-leading
corrections that obey the area law. Away from the
critical point, these sub-leading corrections become the
dominant correction, and the EE shows a strong time-
dependence. How these results are affected by interac-
tions is an interesting open question.
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