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Light carries momentum which induces on atoms a recoil for each photon absorbed. In vacuum,
for a monochromatic beam of frequency ν, the global momentum per photon is bounded by general
principles and is smaller than hν/c leading to a limit on the recoil. However, locally this limit can
be broken. In this paper, we give a general formula to calculate the recoil in vacuum. We show that
in a laser beam with a distorted optical field, there are regions where the recoil can be higher than
this limit. Using atoms placed in those regions we are able to measure directly the extra recoil.

Light exerts upon a surface a pressure called the radia-
tion pressure. From a classical perspective, this pressure
is described by a linear momentum with a density that is
proportional to the energy flux, the Poynting vector [1].
From a quantum mechanical point of view, the pressure
corresponds to momentum carried by photons. The mo-
mentum ~p is defined only for a plane wave and has an
amplitude proportional to the energy (or the frequency
ν) of the photon ||~p|| = hν/c.

When an atom of mass m absorbs a photon, the mo-
mentum of the photon induces a recoil on the atom. The
recoil velocity, vr = hν/mc, plays an important role in
atomic physics (laser cooling and atom interferometry).
The recoil velocity has been measured with a very high
accuracy for the determination of the fine structure con-
stant [2–5]. Measuring the recoil of atoms is also a tool
to probe the local momentum of light. Even though the
absorption of photons is quantized, the best way to calcu-
late the recoil velocity is to use the classical momentum
given by the ratio between the density of linear momen-
tum and the photon density. This approach reveals in-
teresting properties of light, such as in the evanescent
regime where a recoil velocity larger than hν/mc (i.e an
extra recoil velocity) is expected [6, 7].

In this paper, we show that the extra recoil is actu-
ally not limited to the case of an evanescent wave: even
in a beam propagating in vacuum the momentum of a
photon can be locally higher than hν/c. Using atoms
placed in these locations, we have been able to confirm
experimentally this effect.

For a linearly polarized beam and under the paraxial
approximation one can use the scalar diffraction theory to
describe the optical field [8]. The momentum of a photon
is given by the canonical momentum ~p = ~~∇φ, where φ
is the spatial phase of the laser [9][10]. Let us consider
a laser beam propagating along the z axis of which we
know the amplitude A(x, y, z0) and phase φ(x, y, z0) on
the plane z = z0. One can use the Helmholtz equation to
propagate the wavefront along the z axis and therefore
deduce the z component pz of the momentum at position

z0, pz = ~k(1 + δkrel) with

δkrel = −1
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where ∆⊥ and ~∇⊥ are evaluated in the plane z = z0
and k = 2πν/c. The first term related to the phase
gradient corresponds to a tilt in the propagation direction
with respect to the z axis due to a local distortion of
the wavefront. The second term gives a correction to
the momentum even in the case of a plane wavefront.
This counter intuitive term is actually a generalization of
effects already identified in situations where an analytical
solution exists, such as evanescent and Gaussian beams.

In the case of an evanescent wave A0e
αy−iβz, the lon-

gitudinal momentum, proportional to β, is usually ob-
tained with the dispersion relation (β2 − α2 = k2). At
first order in α (paraxial approximation), this equation
leads to β/k = 1 + α2/2k2, the value obtained by calcu-
lating the Laplacian of the amplitude. In [7], the extra
recoil observed in the saturation spectroscopy was ex-
plained by the pseudo-momentum of the photon in the
refractive medium used to generate the evanescent wave.
We should notice that the extra recoil can be explained
by Eq. (1) which does not imply to be close to the surface
of the refractive medium. As we will see, even in vacuum,
positive correction to the recoil could be observed.

For a Gaussian beam, at the position of the waist,
~∇⊥φ = 0, and the momentum of light is given by the
Laplacian of the amplitude. This leads to a correction of
the momentum
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which gives a correction to the atomic recoil, the well
known Gouy phase correction [3, 11, 12], calculated us-
ing the analytical value of the phase of a Gaussian beam.
Atoms being placed usually at the center of a Gaussian
beam experience a negative correction. This correction
is interpreted with the dispersion in momentum of the
plane wave decomposition of the laser beam [13]. Each
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plane wave tilted by an angle θ with respect to the z-axis
gives a negative correction −θ2/2. The average longitu-
dinal momentum reduction is δkrel = −1/(kw)2. Locally,
the correction is different: at the center the correction is
twice this value and at large distances, the sign of the
correction changes: even for a Gaussian beam, an extra
recoil can be observed.

In this paper we consider a more general case of dis-
torted optical field with amplitude noise and phase noise.
We should first note that the spatial phase and ampli-
tude fluctuations are mixed during propagation. Even
a wave-front distortion caused by optics will appear as
amplitude fluctuations after propagation. Furthermore
both the relative fluctuations of the amplitude (σA/A)
and the phase fluctuations (σφ) have the same standard
deviation. In Eq. (1), the term due to wave-front distor-
tions (which scales as σ2

φ) is therefore negligible compared
to the term due to amplitude fluctuations, which scales
as σA/A. This leads to a counter intuitive result: the
term due to spatial intensity fluctuations, which is usu-
ally ignored, is dominant over the term due to wave-front
distortions. In the rest of the paper, the latter is always
neglected.

In order to estimate the correction due to the local
fluctuations of the amplitude we consider, for the sake of
simplicity, an optical wave with an auto-correlation func-
tion of the amplitude given by σ2

i e
−(x2+y2)2/l2/4. The

parameter l is the correlation length that gives the scale
of the second term of Eq. (1) and σi is the RMS rela-
tive intensity noise. Using the wave-vector power spec-
tral density (WV-PSD) we estimate σ(δkrel) at

√
2σi

(kl)2 (for
details see [14]). It is important to note that this term
is different from the average momentum of the photons
that can also be calculated from the WV-PSD, yielding
− σ2

i

2(kl)2 . This result is related to the previous one: even
though the typical value of the longitudinal momentum of
plane-wave photons scales as σ2

i /(kl)
2, due to coherence

between the different plane waves, the local momentum
fluctuates with a much higher amplitude.

Let us take for example l = 100 µm and RMS ampli-
tude of σi = 0.05 for a light wave-length of λ = 780 nm.
This corresponds to typical values when using poor qual-
ity optical elements. The RMS value of δkrel is 100 ppb.
The amplitude of this effect is much larger than the sensi-
tivity of atom recoil measurements performed using atom
interferometry. However it has never been observed yet
because experiments measure the average recoil and are
not sensitive to local fluctuations.

To observe this effect one can take advantage of the cor-
relation between local light momentum and light-field in-
tensity: indeed, this correlation arises from the Laplacian
term in equation 1, which changes sign between minima
and maxima of intensity. To illustrate and understand
this correlation and how the experiment takes advantage
of it, we have performed a numerical simulation of the

propagation of a noisy light profile. We generated a field
on the (x, y) plane with a uniform intensity and a random
phase noise with a typical correlation length l = 100 µm
and RMS amplitude of 0.07 rad. Figure 1 shows a slice
of this beam taken in the (x, z) plane after a propaga-
tion of 50 cm. The high or low intensity regions have
a typical width of l = 100 µm and a typical length of
zl = l2/λ ' 1 cm. On the right of the picture, we have
plotted the phase of the laser beam only for those re-
gions. For high intensity regions (continuous contour),
the phase evolves from typically 0.05 rad on the top to
-0.05 rad at the bottom (red to blue, or σi to −σi): there
is a negative correction to the photon momentum with
a relative amplitude that scales as σi/kzl, i.e. σi

(kl)2 as
calculated above. The opposite occurs for low intensity
regions (dashed line).

Therefore, in order to see this effect, one has to se-
lect atoms in regions of relatively high or relatively low
intensity. For that let us consider an experiment sensi-
tive to the momentum of light: if the probability P (I)
to transfer light momentum to the atoms depends on the
intensity, the spatial distribution of atoms is filtered and
is therefore correlated to the local photon momentum.
This gives rise to a correction with respect to the aver-
age momentum

〈δkrel〉 =
〈δkrelP (I)〉
〈P (I)〉

(3)

As I and δkrel are anti-correlated (see [14]), the correc-
tion due to local fluctuations of the light momentum can
be negative or positive depending on whether P (I) is a
decreasing or an increasing function of intensity. This is
what we observed in the experiment described below.

Our experiment uses Bloch oscillations (BO) in an ac-
celerated optical lattice [15, 16] to transfer a large number
of recoils to ultra-cold 87Rb atoms. The recoil velocity
is then measured via the Doppler effect using atom in-
terferometry. A detailed description of the experimental
set-up can be found in [2]. We use an atomic cloud of
nearly 106 atoms with a 2 mm radius and at a tempera-
ture of 4 µK. The interferometer is operated in the usual
Ramsey-Bordé configuration with a Ramsey time of 10
ms. It uses two pairs of π/2 light pulses that drive a
Raman transitions between the hyperfine levels F = 1
and F = 2. The first pair selects atoms which are then
coherently accelerated with 250 BO in 3.5 ms, followed
by the second pair that measures the total momentum
transferred between the two pairs of pulses. Interference
fringes are obtained by scanning the frequency δmeas of
the last pair of pulses (see Fig. 2) and by measuring the
relative population in each hyperfine level (F = 1 and
F = 2) using time-of-flight technique.

The efficiency of BOs depends sharply on the intensity
of the laser. If the intensity is lowered, due to Landau-
Zener losses only the atoms in the higher intensity regions
survive the BO and are involved in the interferometer.
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FIG. 1. Simulation of a slice of the intensity (left) and phase (right) of a laser beam taken along the propagation axis (vertical
axis in the figure). Random phase fluctuations with a typical size of 100 µm were generated on the (x, y) plane and propagated
over 50 cm. The continuous (resp. dashed) contour shows regions of relatively high (resp. low) intensity. In the high intensity
region (resp. low intensity), the phase evolves along the z direction, from a typical value of 50 mrad to -50 mrad (resp. -50 mrad
to 50 mrad), leading to a local variation of the photon momentum.
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FIG. 2. Temporal sequence for the measurement of the re-
coil velocity. The Ramsey-Bordé interferometer consists of
four Raman π/2 pulses. Between the first and second pair of
pulses, BOs are used to accelerate atoms. In a), the intensity
of the Bloch beams is reduced in order to select atoms in the
high intensity region. In b), the BO pulse A is used to remove
atoms in the high intensity region and the pulse B at fixed
intensity is used to the measurement of the recoil velocity.

For instance, if 50% of the atoms are lost during BO,
the remaining atoms are mainly in the regions where the
intensity is larger than the average and a negative effect
of the order of σi

(kl)2 should be observed.
We repeat the recoil measurement by scanning the in-

tensity of the Bloch beams (see Fig. 2.a), we measure
also the fraction of atoms that survive BOs, this fraction
gives the efficiency η of BOs. Dots in Fig. 3 show the
relative recoil velocity with respect of the value obtained
in [2] as function of η. We choose this representation
because, as we will see latter, in our model this curve is

FIG. 3. The relative recoil velocity variation δvr/vr as a func-
tion of efficiency η. Dots correspond to experimental data
which are obtained in two cases: with and without clipping
one of the Bloch beams. The deviation in the momentum
from the ideal plane wavefront is larger when the beam is
clipped due to amplified fluctuations. Line: calculated cor-
rection due to the change in momentum δkrel as a function of
the efficiency of BOs (from Eq. 5). In our model, this curve
is universal. The only parameters are the RMS intensity fluc-
tuations σi and the correlation length l of those fluctuations
which give the amplitude factor (σi/(kl)

2) of the correction.

universal. As the intensity is lowered, the BOs efficiency
decreases (see [14]) and the deviation becomes larger. In
order to confirm the effect, one of the two Bloch beams
is clipped with an aperture of diameter 3 mm to amplify
the intensity fluctuations. Here, we clearly observe an in-
creased deviation from the plane wave momentum when
the beam is clipped for a given η.

In order to observe an extra recoil, one has to place
atoms in regions of relatively low intensity. To this end,
we have changed the temporal sequence of the experiment
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FIG. 4. Measurement of the relative recoil in a distorted field
obtained by removing atoms in the high intensity regions of
the Bloch beams, following the protocol described on Fig. 2.b.

(Fig. 2.b): just before the acceleration, we perform 10
BOs with a tunable intensity (Bloch pulse-A) in such a
way that atoms performing BOs are removed (pushed
away, they do not participate in the subsequent recoil
measurement). At low intensities, no atoms are removed
and hence no effect should be observed. When the power
of this first Bloch beam is increased, atoms are removed
from the experiment, starting with the ones that are at
maxima of intensity. For higher power, only atoms at
minima survive. The first Bloch pulse, used to filter the
spatial distribution of atoms, is then followed by the 250
BOs at a fixed and high power which are normally used
to measure precisely the recoil velocity (Bloch pulse-B on
Fig. 2.b).

Figure 4 shows the results. This experiment was
performed with one of the beams being clipped by a
3 mm aperture. Without losses, we observe a momentum
slightly smaller than ~k, this is the same effect described
earlier. However, when the number of atoms is reduced
by the selecting BOs, the measured photon momentum
increases, leading to an effect larger than 4× 10−8. One
would expect to see a correction with an opposite sign
and the same amplitude in comparison with the data
shown in Fig. 3, but we observe a reduction of the am-
plitude of the effect that can be explained by the motion
of atoms between the selection and measurement pulses:
even if they are selected at low intensity, the transverse
motion of the atoms brings them to regions of higher
intensity, leading to a reduction of the correction.

Let us now discuss quantitatively the experimental
data. For BOs, the probability P (I) is governed by the
Landau-Zener losses. As it varies sharply with the in-
tensity, we model it with a Heaviside function centered
around a critical intensity Ic [17, 18]. Using this model,
one can calculate an analytical expression for the effi-
ciency η and average δkrel (from Eq.3) as a function of
Irel = (Ic − I)/(Iσi)

η =
erfc(Irel/

√
2)

2
(4)

〈δkrel〉 = − 1

k2l2
σi√
π/2

e−I
2
rel/2

η
(5)

From these two quantities a parametric curve can be
drawn and is used to fit the data in Fig. 3. A single pa-
rameter is used, the quantity σi

(kl)2 . For the data without
beam clipping, we obtain σi

(kl)2 = 8 × 10−8, this corre-
sponds to 5% of fluctuations at a scale of l = 100 µm,
which is compatible with an independent measurement
of the phase profile.

Since BOs are a pure coherent quantum phenomenon,
one can think that the effect described and observed in
this paper is rather a signature of processes which cause a
decoherence of the system (spontaneous emission, inter-
atomic interactions or disordered light potential). Since
the first observation of BOs of cold atoms in optical lat-
tices an important work has been devoted to investigate
the question of decoherence [19–26]. In particular, the
dynamics of BOs in disordered optical lattices has been
investigated in detail in [24]. Both theory and experi-
ment [23–25] have shown that even a very small disorder
results in broadening of the quasi-momentum distribu-
tion that causes a damping of the center-of-mass motion.
In our experiment during the Bloch acceleration atoms
move by about 5 mm, this distance is smaller than the
characteristic length of the intensity fluctuations along
the z-axis (see figure 1). In addition, we analyzed in de-
tail our raw experimental data (time-of-flight signals and
the atomic fringes), as shown in [14] we do not observe
any signature of the scattering of the quasi-momentum
underlying a damping of BOs. Furthermore, we used a
dilute atomic gas and the Bloch laser frequencyl is far-
detuned from the resonance, thus inter-atomic interac-
tions and spontaneous emission are negligible [2].

In this paper, we have calculated and measured lo-
cally the momentum of light using the recoil of atoms.
We have been able to measure a recoil higher than the
fundamental limit of hν/mc per absorbed photon. Even
though the photon absorption is quantized and the ve-
locity of the atom is well measured, it is not possible
to give a precise meaning to the local momentum of the
photon. For a photon, like any other particle, the mo-
mentum is defined only for a plane wave. Any other field
can be decomposed as a sum of plane waves. An atom
placed in this field perceives all those photons, however
the transferred recoil is not the average momentum of
those photons. This leads to the following result: a su-
perposition of photons each with a momentum equal to
hν/c may result in a recoil velocity larger than hν/mc for
the absorption of one photon. To the best of our knowl-
edge, we report the first ever observation of this effect.
Finally, this work is also of special interest for applica-
tions of BOs and atom interferometry for high precision
measurements [2, 5, 27–36]
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