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Coherent control of reactants remains a longstanding challenge in quantum chemistry. In par-
ticular, we have studied laser-induced molecular formation (photoassociation) in a Raman-dressed
spin-orbit-coupled 87Rb Bose-Einstein condensate, whose spin quantum state is a superposition of
multiple bare spin components. In contrast to the notably different photoassociation-induced frac-
tional atom losses observed for the bare spin components of a statistical mixture, a superposition
state with a comparable spin composition displays the same fractional loss on every spin component.
We interpret this as the superposition state itself undergoing photoassociation. For superposition
states induced by a large Raman coupling and zero Raman detuning, we observe a nearly complete
suppression of the photoassociation rate. This suppression is consistent with a model based upon
quantum destructive interference between two photoassociation pathways for colliding atoms with
different spin combinations. This model also explains the measured dependence of the photoasso-
ciation rate on the Raman detuning at a moderate Raman coupling. Our work thus suggests that
preparing atoms in quantum superpositions may represent a powerful new technique to coherently
control photochemical reactions.

Quantum coherent control of atomic processes has
been a significant triumph of atomic, molecular, and op-
tical physics. Extending such coherent control to molecu-
lar processes is an active and interesting research area. In
particular, the study of coherent control of photochemical
molecular processes has focused on light-based control or
control of the initial and final quantum states (for reviews
see Refs. [1–4]). Theoretical studies have concerned both
the manipulation of light parameters, such as the pulse
trains, polarization, relative phases, etc., [5–12] and the
initial or final quantum states [13]. Experimentally, tai-
lored light pulses have been shown to control isomeriza-
tion, photoassociation (PA), and photodissociation [14–
21]. However, there is much lesser experimental study of
influencing molecular processes by coherently controlling
the reactants. Such a difficulty can arise from incoherent
population in many scattering states due to finite exper-
imental temperatures or an incomplete understanding of
the quantum molecular processes.

In this work, we explore the question: what hap-
pens in a chemical reaction if the reactants are pre-
pared in quantum superposition states? Here we re-
port spin-dependent PA experiments using a 87Rb Bose-
Einstein condensate (BEC). Photoassociation [22] is a
light-assisted chemical process where two atoms absorb a
photon while scattering, and bind into an excited molec-
ular state. Our Bose-Einstein condensates are at ultra-
cold temperatures and populate only a small number of
scattering channels. In our experiment we have prepared
atoms in spin-momentum quantum superposition states,
and a pair of such atoms can couple to an excited molec-

ular state simultaneously through two atomic scattering
channels. These two channels of different spin combina-
tions both contribute to the coupling, but with opposite
sign due to opposite Clebsch-Gordan (CG) coefficients.
The relative amplitudes of the two contributions depend
on the superposition state. The spin portion of a repre-
sentative scattering state is shown in Fig. 1 (a), along
with the relevant molecular potential energy curves plot-
ted against the internuclear separation R in units of Bohr
radius a0 [23]. Our system exploits the intrinsic quantum
nature of PA and our tunable superposition states of the
reactant atoms allows us to observe a nearly total sup-
pression of the molecular formation, thus representing a
significant step forward for coherent chemistry.

Our experiment begins with a 87Rb BEC of ∼ 1.5×104

atoms in the f = 1 hyperfine state, which is produced via
all optical evaporation in a cross-beam optical dipole trap
created by a 1550 nm laser. The trap has a characteristic
trap frequency ω̄ = (ωxωyωz)

1/3 ∼ 2π × (140 × 140 ×
37)1/3 Hz = 2π × (90 Hz) [24]. Tuning the magnetic
field during the evaporation can lead to a BEC with bare
mf = −1, 0,+1 spin state, or a statistical mixture of all
three.

After preparing a bare BEC in spin state mf = 0,
we can load the BEC into a spin-momentum super-
position by adiabatically applying a pair of counter-
propagating Raman beams with wavelengths near 790.17
nm, see Fig. 1 (b). The Raman beams couple the mf

states, as shown in Fig. 1 (c), and “dress” the atoms
into superpositions of the mf spin states and mechan-
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FIG. 2. Photoassociation of BECs with atoms in a spin sta-
tistical mixture (with Raman coupling ΩR = 0 Er) versus a
spin-momentum superposition state with similar atom num-
ber and spin composition (ΩR = 8.0 Er and Raman detuning
δ = 0.0 Er). (a) and (b): the average optical density (OD)
images with PA off and on resonance for the spin statistical
mixture (a) and the spin-momentum superposition state (b).
(c) and (d): the extracted normalized atom numbers of the
mf components and the total of BECs at various PA detun-
ings (∆νPA) from resonance for the spin statistical mixture
(c) and spin-momentum superposition (d). The atom num-
bers of every mf component or the total are normalized by
the corresponding fitted values of the off-resonant atom num-
ber N0 and the error bars are the standard error of the mean.
Both the OD images and data points are averages of 5 to 7
experimental runs.

N(η) =N0
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(2)

where η = kPAρ0tPA is a dimensionless parameter in-
dicating the strength of the PA pulse, ρ0 is the peak
atomic density at the center of the BEC, and N0 is the
off-resonant atom number with no PA loss. We denote
the resonant kPA for a BEC composed of mf = 0 bare
spin (or spin-momentum superposition) states as k0,0 (or
ksup).
First, as shown in Fig. 2, we compared PA of BECs

in a spin statistical mixture to that of BECs in a spin-
momentum superposition state, with a nearly identical
atom number and spin composition in the two cases.
For the spin-momentum superposition state, we used
ΩR = 8.0Er and δ = 0Er (see also Fig. 1 (d)). In pan-
els (a) and (b), we show the optical density (OD) images
for PA both on and off-resonance for the spin statistical
mixture (a) and the spin-momentum superposition state
(b). For the spin statistical mixture, the PA-induced loss

for the mf = 0 component is notably larger than that
for the mf = ±1 components. The lower reduction of
the OD was due to the lower ρ0 for the mf = ± 1 com-
ponents and that each molecule formed by the PA pro-
cess reduced the mf = 0 atom number by two, but for
mf = ±1, only by one each. However, for PA on a spin-
momentum superposition state, we observed comparable
PA-induced loss among all threemf components. In pan-
els (c) and (d), for each mf component and the total, we
show the normalized atom number (N/N0) at various PA
detunings (∆νPA) from the resonance for the statistical
mixture (c) and the spin-momentum superposition state
(d). Each PA spectrum for every mf component or the
total was fitted to Eq. 2 to extract the appropriate N0

and then normalized. The N0 were ∼ (1.2,7.0,1.1)×103

and (1.5,6.9,1.3)×103 for the (mf = −1, 0,+1) compo-
nents of the statistical mixture and superposition state
respectively. For the spin statistical mixture, (79 ± 2)%
of the mf = 0 atoms were lost on resonance, but less
than ∼ 25% were lost for the mf = ±1 components. For
the dressed BECs, all mf components lost (36 ± 2)%.
All the data were taken using PA pulses with identical
parameters.

To further explore this phenomenon, we prepared
BECs with atoms in several spin-momentum superpo-
sition (or mf = 0 spin) states by using ΩR = 0, 1.1 , 3.2,
and 12 Er with δ = 0Er (or δ ∼ 100Er) and plotted the
normalized PA spectra in Fig. 3 (a)-(d) using red squares
(or black circles). With δ ∼ 100Er, the Raman beams
did not dress the atoms into spin-momentum superpo-
sition states, and these BECs therefore remained in the
mf = 0 bare spin state and displayed comparable loss
(∼ 40%) for all ΩR. However, the loss for BECs in spin-
momentum superpositions decreases with increasing ΩR.
At ΩR = 12Er, no loss is apparent. For all the data in
panels (a) to (d), we used comparable total off-resonant
BEC atom numbers (N0 ∼ (1.1± 0.1)× 104) and square
PA pulses with tPA = 3.2 ms and IPA = 6.0±0.7 W/cm2.

We also fitted photoassociation spectra measured with
δ = 0 (or δ ∼ 100Er) to Eq. 2 and extracted
ksup (or k0,0), and then plotted ksup/k0,0 in Fig. 3
(e). We used PA pulses with IPA = 6.1 ± 0.7 W/cm2

and tPA of 2 to 8 ms to induce a repeatable but
unsaturated loss of (10 to 40)%. Also included are
solid bands, which are predictions for ksup/k0,0 derived
as follows. The molecular hyperfine state excited by
our chosen PA transition has total angular momentum
F = 1 and nuclear spin I = 1, and only couples to
a pair of colliding atoms (represented by subscripts a
and b in the following) whose total angular momentum
|F = fa + fb,mF = mf,a +mf,b〉 = |0, 0〉. Using the sin-
gle particle basis, |fa,mf,a〉 |fb,mf,b〉, |F = 0,mF = 0〉 =
(|1,+1〉 |1,−1〉+ |1,−1〉 |1,+1〉 − |1, 0〉 |1, 0〉)/

√
3. Thus,

there are two allowed pathways for the PA transition (af-
ter accommodating the indistinguishability of bosons):
one in which both atoms have mf = 0 and another with
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FIG. 4. Normalized photoassociation rate, ksup/k0,0, for
BECs at Raman detuning δ from−2.5 to +2.5Er with Raman
coupling ΩR = 5.4 Er. The orange (blue) bands are theoret-
ical predictions with (without) the destructive interference
term in Eq. 3. The band boundaries reflect one standard
deviation of the predicted values given our experimental un-
certainties. Inset: dressed band structures for ΩR = 5.4Er

and δ = −2, 0, and 2Er. The dots represent BECs prepared
at the band minima.

nearly full suppression of ksup/k0,0 as resulting from de-
structive interference between the two out-of-phase path-
ways (mf = 0,mf = 0 and themf = +1,mf = −1). Our
scattering state simultaneously accesses these two path-
ways as it couples to the chosen excited molecular state.
Thus our observations suggest that scattering states of
atoms in quantum superpositions may offer a powerful
new approach to coherently control photochemical reac-
tions.
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[28] Y.-J. Lin, K. Jiménez-Garćıa, and I. B. Spielman, Nature
471, 83 (2011).

[29] R. A. Williams, L. J. LeBlanc, K. Jiménez-Garćıa, M. C.
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