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We find that uniformly accelerated motion of a mirror yields excitation of a static two-level atom
with simultaneous emission of a real photon. This occurs because of virtual transitions with proba-
bility governed by the Planck factor involving the photon frequency ν and the Unruh temperature.
The result is different from the Unruh radiation of an accelerated atom, which is governed by the
frequency of the atom, ω, rather than frequency of the emitted photon. We also find that exci-
tation probability oscillates as a function of the atomic position because of interference between
contributions from the waves incident on and reflected from the mirror.

INTRODUCTION

Virtual processes are part of the vacuum picture of
quantum electrodynamics. E.g., an atom can jump to an
excited state and a virtual photon is emitted, followed
quickly by the reverse process in which the atom jumps
back to the ground state and now absorbs a photon. The
surreal virtual processes have real effects, e.g., they can
shift the energy levels of atoms (Lamb shifts) and yield
van der Waals forces. Virtual processes contribute to
Raman scattering, which is of great practical importance
for spectroscopy. Namely, in one of the pathways, the
molecule can go into a virtual state and at the same time
emit a Raman photon, then a higher frequency pump
photon is absorbed. The excitation of the molecule and
emission of the photon take place before absorption and
are due to counter-rotating terms in the Hamiltonian.
Spontaneous creation of particles in an external field or

a curved spacetime is one of the most prominent phenom-
ena in quantum field theory. A strong electric field pro-
duces pairs of charged particles and antiparticles, known
as the Schwinger mechanism [1]. Another remarkable
phenomenon is the emission of all species of particles
from strongly curved spacetime of black holes, known
as Hawking radiation [2].
For a free quantum field in its vacuum state in

Minkowski spacetime, an observer with uniform accelera-
tion a will feel that he is bathed by a thermal distribution
of quanta of the field (Rindler particles) at temperature
[3]

TU =
~a

2πkBc
. (1)

In particular, ground-state atoms, accelerated through
Minkowski vacuum, will be promoted to an excited state
by absorption of the Rindler particles (Unruh effect)
[3]. The inertial observer interprets the absorption of a
Rindler particle as the emission of a Minkowski particle
[4], which is known as acceleration radiation.
By breaking and interrupting the virtual processes

which take place all around us we can render the virtual
photons real. Atom acceleration converts virtual pho-

tons into real at the expense of the energy supplied by
the external force field driving the center-of-mass motion
of the atom against radiation reaction. One can enhance
the chance of photon emission by many orders of magni-
tude by turning on coupling between field and atom very
quickly [5]. This can be achieved when atoms are injected
into a high Q cavity which produces a strong nonadia-
batic effect at the cavity boundaries [5]. When the atoms
are injected in a regular fashion, squeezed radiation can
be produced [5].

Spontaneous excitation of atoms in curved spacetime
of Schwarzschild [6–8] and Kerr [9] black holes, and van
der Waals/Casimir-Polder interatomic interactions be-
tween two accelerating atoms [10–12] are subjects of re-
cent interest.

Quantum vacuum can also be excited by moving mir-
rors [13]. If the mirrors move over a limited time interval,
the “in” vacuum state generally contains photons after-
wards and the “out” vacuum state contained photons
previously. This is now known as the dynamical Casimir
effect. The number of generated photons is determined
by how fast the mirror velocity changes with time. For
adiabatic motion the effect is tiny unless mirrors move
near the speed of light. Nevertheless, the dynamical
Casimir effect has been demonstrated experimentally in
a superconducting circuit [14].

A single mirror oscillating at frequency f produces
photons in pairs such that f1 + f2 = f . This is sim-
ilar to an optical parametric oscillator that converts an
input laser wave into two output waves of lower frequency
by means of the second-order nonlinear optical interac-
tion. It has been demonstrated experimentally that an
oscillating mirror generates squeezed light, which is a sig-
nature of the quantum nature of the generation process
[14].

Theoretical investigations of photon generation by ac-
celerating mirrors have involved generalization of the
problem into 3+1 dimensions [15–17], study of the back-
reaction on the mirrors [18, 19], non-planar mirror shapes
[15, 16, 20], “mirrors” carrying different boundary con-
ditions [21, 22], and analogy with radiation from an elec-
trical charge in classical electrodynamics [15, 17].
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Here we consider a system that consists of a mirror
and an atom and investigate excitation of such a system
by virtual processes when there is relative acceleration
between the atom and the mirror. Namely, we compare
two cases. First is acceleration radiation of an atom in
the presence of a fixed mirror when modes of the field
are stationary. In the second case the atom is fixed, but
the field modes are changing with time (mirror is accel-
erating). As we show, excitation occurs with different
probability in either case, but the answers are related by
interchange of the atom and photon frequencies. This
provides new insights on how the equivalence principle
applies to QED. In addition, we find that interference
between incident and reflected virtual photons yields pe-
culiar spatial oscillations of the excitation probability.

EXCITATION OF AN ATOM UNIFORMLY

ACCELERATED RELATIVE TO A MIRROR

Here we consider an electrically neutral two-level (a
and b) atom with transition angular frequency ω moving
along the z−axis with a uniform acceleration a. The
atom trajectory is given by

t(τ) =
c

a
sinh

(aτ

c

)

, z(τ) =
c2

a
cosh

(aτ

c

)

, (2)

where t is the lab time and τ is the proper time for the
accelerated atom. In this paper we consider either di-
mension 1+1, or dimension 3+1 but restrict photons to
have wave vector k parallel to the z−axis. The interac-
tion Hamiltonian between the atom and a photon with
angular frequency ν reads

V̂ (τ) = ~g (âνφν [t(τ), z(τ)] + H.c.)
(

σ̂e−iωτ +H.c.
)

,
(3)

where âν is the photon anihilation operator, σ̂ is the
atomic lowering operator and g is the atom-field cou-
pling constant. We shall assume that g is approximately
independent of τ , which is the case for scalar (spin-0)
“photons” (however, g may depend on ν). Initially the
atom is in the ground state and there are no photons. In
Eq. (3) φν is the field mode function. Since the atom
feels the local value of the field, φν is taken at the atom’s
location t(τ), z(τ).
We assume that there is a plane mirror fixed at z =

z0 < c2/a, so that the atom’s trajectory does not cross
the mirror (see Fig. 1). Normal modes of the electro-
magnetic field with frequency ν are standing waves

φν = e−iνt−ikz+ikz0 − e−iνt+ikz−ikz0 , ν, k > 0 (4)

which obey the boundary condition φν(z0) = 0. They
are superpositions of incident and reflected waves. We
assume that the normalization factor in φν is subsumed
under the coupling constant g.
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FIG. 1: The atom is moving with uniform acceleration a along
the z−axis and the mirror is fixed at z = z0 in Minkowski
spacetime.

The probability of excitation of the atom (angular fre-
quency ω) with simultaneous emission of a photon with
angular frequency ν is due to a counterrotating term
â+k σ̂

+ in the interaction Hamiltonian. Probability of this
event is

Pexc =
1

~2

∣

∣

∣

∣

∫

dτ 〈1ν , a| V̂ (τ) |0, b〉
∣

∣

∣

∣

2

=

= g2

∣

∣

∣

∣

∣

∣

∞
∫

−∞

dτ
[

eikz(τ)−ikz0 − c.c.
]

eiνt(τ)+iωτ

∣

∣

∣

∣

∣

∣

2

. (5)

Inserting here Eqs. (2) and k = ν/c we obtain

P = g2

∣

∣

∣

∣

∣

∣

∞
∫

−∞

dτ
[

eiν
c
a eaτ/c

−ikz0eiωτ − c.c.
]

∣

∣

∣

∣

∣

∣

2

.

Making change of the variable to x = νc
a eaτ/c yields

P =
c2g2

a2

∣

∣

∣

∣

∣

∣

∞
∫

0

dx
[

eixx
icω
a −1e−ikz0+i cωa ln( a

νc) − c.c.
]

∣

∣

∣

∣

∣

∣

2

.

(6)
Taking into account that

∞
∫

0

dxe−ixx−
icω
a −1 = e−

πcω
2a Γ

(

− icω

a

)

,

where Γ is the gamma function, and the property
|Γ(−ix)|2 = π/[x sinh(πx)], we obtain

P =
8πcg2

aω

sin2 (νz0/c+ ϕ)

exp
(

2πωc
a

)

− 1
, (7)

where ϕ is independent of z0.
We see that P is proportional to the Planck factor

[

exp
(

~ω
kBTU

)

− 1
]

−1

, which contains the frequency of the

atom ω and the Unruh temperature (1). P oscillates



3

�

�

�̅

�̅

Rindler space

Atom

Mirror MirrorAtom

Minkowski space

��

�
0 ��

Atom is fixed in 
Minkowski space

Mirror

(�)

(�) (�)

FIG. 2: (a) The mirror is moving with uniform acceleration a
along the z−axis and the atom is fixed at z = z0 in Minkowski
spacetime. (b) Trajectory of the mirror and the atom in
Minkowski spacetime. The mirror is moving from z = ∞

(t = −∞) towards the atom and decelerates. At t = 0 the
mirror reaches the turning point (z = c2/a) and starts to
move to the right away from the fixed atom. For t > 0 the
mirror is accelerating. (c) Trajectory of the mirror and the
atom in Rindler space. The mirror is fixed at z̃ = 0, while the
atom is moving.

as a function of the mirror position z0 because of in-
terference between contributions from the incident and
reflected waves. This is somewhat analogous to Fano in-
terference [23]. The period of the spatial oscillations is
equal to λ/2, where λ is the wavelength of the emitted
photon.

EXCITATION OF THE ATOM BY A

UNIFORMLY ACCELERATED MIRROR

Next we consider the opposite case, namely, we assume
the atom does not move in the inertial reference frame.
It is fixed at z = z0 < c2/a and the mirror is uniformly
accelerated following the trajectory (2) (see Fig. 2a,b).
The coordinate transformation

t =
c

a
eaz̄/c

2

sinh

(

at̄

c

)

, (8)

z =
c2

a
eaz̄/c

2

cosh

(

at̄

c

)

, (9)

where a is a constant, converts the Minkowski spacetime
line element ds2 = c2dt2−dz2 to the Rindler line element
[24]

ds2 = e2az̄/c
2 (

c2dt̄2 − dz̄2
)

. (10)

A mirror moving along the trajectory z̄ = 0 in the Rindler
space is uniformly accelerating in the Minkowski space
(see Fig. 2c) and moves along the trajectory (2). Normal
modes of scalar photons in the conformal metric (10) take
the same form as the usual positive frequency normal
modes in the Minkowski metric, e.g., one can take them
as standing waves

φν(t̄, z̄) = e−iνt̄+ikz̄ − e−iνt̄−ikz̄ , (11)

where ν is the photon angular frequency in the reference
frame of the mirror (Rindler space). However, modes
(11) are a mixture of positive and negative frequency
modes with respect to the physical Minkowski spacetime.
Therefore, the vacuum state of these modes is not the
Minkowski vacuum but rather the Rindler vacuum, which
is what we assume for those modes.
From Eqs. (8) and (9) we obtain t̄ and z̄ in terms of t

and z

t̄(t, z) =
c

a
arctanh

(

ct

z

)

=
c

2a
ln

(

z + ct

z − ct

)

, (12)

z̄(t, z) =
c2

2a
ln

[

a2

c4
(

z2 − c2t2
)

]

. (13)

Plugging Eqs. (12) and (13) into Eq. (11) yields the
mode functions in Minkowski coordinates. One should
note that coordinate transformation (12), (13) covers
only the part of the Minkowski spacetime with z > c|t|
(right Rindler wedge). Nevertheless, the left and right
moving mode solutions have natural continuations into
the future (t > |z|/c) and the past (t < −|z|/c) wedges
respectively. Indeed, using Eqs. (12), (13) and k = ν/c
we obtain the following extension of the mode functions
in Minkowski coordinates

φν(t, z) = eiν
c
a ln[ a

c2
(z−ct)]θ(z − ct)

−e−iν c
a ln[ a

c2
(z+ct)]θ(z + ct). (14)

Equation (14) is a superposition of the incoming (first
term) and reflected (second term) traveling waves.
The probability P that the static atom gets excited

and a photon in the mode (14) is generated is given by
the integral

P = g2
∣

∣

∣

∣

∫

dtφ∗

ν(t, z0)e
iωt

∣

∣

∣

∣

2

, (15)

where t is the proper time for the atom, and z is taken
at the atomic position z0. Using Eq. (14), we obtain

P = g2

∣

∣

∣

∣

∣

∣

∣

z0
c

∫

−∞

dte−i νc
a ln[ a

c2
(z0−ct)]+iωt
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−
∞
∫

−
z0
c

dtei
νc
a ln[ a

c2
(z0+ct)]+iωt

∣

∣

∣

∣

∣

∣

∣

2

. (16)

Changing t → −t in the first term yields

P = g2

∣

∣

∣

∣

∣

∣

∣

∞
∫

−
z0
c

dtei
νc
a ln[ a

c2
(z0+ct)]+iωt − c.c.

∣

∣

∣

∣

∣

∣

∣

2

. (17)

Changing the integration variable to x = ω(t + z0/c),
we have

P =
g2

ω2

∣

∣

∣

∣

∣

∣

∞
∫

0

dxx
iνc
a eix−iωz0/c−i νc

a ln( cω
a ) − c.c.

∣

∣

∣

∣

∣

∣

2

. (18)

Using

∞
∫

0

dxeixx
icν
a = − πe−

πcν
2a

sinh
(

πcν
a

)

Γ
(

− icν
a

)

and the property |Γ(−ix)|2 = π/[x sinh(πx)] we find

P =
8πcνg2

aω2

sin2 (ωz0/c+ ϕ)

exp
(

2πνc
a

)

− 1
, (19)

where ϕ is independent of z0.
Equation (19) shows that probability of atomic excita-

tion with simultaneous emission of a photon in the mode
(14) is governed by the Planck factor containing the pho-
ton frequency ν. This is different from Eq. (7) obtained
for the uniformly accelerated atom. In the latter case the
excitation probability is governed by the Planck factor in-
volving the atomic frequency ω. On the other hand, the
spatial oscillations of the probability (19) are governed by
the atomic wavenumber ω/c, while for the case of a fixed
mirror they are determined by the photon wavelength.
Our calculation in this section assumes that the mode

(14) is initially empty - that is, it is in the Rindler-like
vacuum associated with the mirror trajectory (see Sec.
6 in [25]). A calculation for a more physically plausible
initial state for the field modes would be that they are
initially in the Minkowski vacuum until they reflect off
the mirror. One method for calculating with such a state
is given by Su et al. [26], but this shall be left to future
work.
In any event, however, the analysis in this paper

restores a comforting symmetry between two Killing
frames, and it is highly relevant to the never-ending de-
bates about how the principle of equivalence applies to
nongravitational processes in a gravitational field (see,
e.g., [27]). This point is developed further in [28]. In par-
ticular, in the scenario of [8] the emptiness of the Rindler
(or Boulware [29]) mode is physically natural if the exper-
iment begins outside a massive star right before it starts
to collapse.

SUMMARY

Acceleration of an atom relative to the field can lead to
atomic excitation with simultaneous emission of a pho-
ton. This occurs because of virtual transitions and is
governed by the counterrotating term in the interaction
Hamiltonian. We found that the probability P of such
an event depends on whether the atom is accelerating
relative to a fixed mirror or the mirror (field modes) is
accelerating while the atom is held fixed. Namely, in the
former (latter) case P is proportional to the Planck factor
containing the atom (photon) frequency and the Unruh
temperature (1).

We also found that probability P undergoes spatial os-
cillations as a function of the atom (mirror) position due
to interference between contributions from the incident
and reflected waves. This is somewhat analogous to Fano
interference [23]. At certain positions such interference
totally suppresses photon emission along the z−axis.

If the system is placed in a large cavity then the field
will reach a steady state. Photon statistics can be ob-
tained using the quantum master equation technique, as
developed in the quantum theory of the laser [30]. If
atoms are ejected randomly into the cavity the photon
statistics for each field mode will be thermal [5]. The av-
erage photon number in the mode, n̄ν , is determined by
the balance between photon emission and absorption. If
the mirror is fixed and the atom is accelerating, then Eq.
(7) leads to the following answer for the average photon
occupation number in the mode with angular frequency
ν:

n̄ν =
1

exp
(

2πcω
a

)

− 1
. (20)

The photon spectrum is flat; that is, n̄ν is independent of
the photon frequency ν. This is similar to a flat photon
spectrum obtained when atoms are randomly ejected into
a cavity [5].

In the opposite case of accelerated mirror, Eq. (19)
results in

n̄ν =
1

exp
(

2πcν
a

)

− 1
, (21)

which is a Planck distribution. Thus, depending on
whether the atom or the mirror is accelerating we ob-
tain different photon distributions.

The result (21) is analogous to the Planck spectrum
of photons emitted by atoms which are freely falling in
the gravitational field of a Schwarzschild black hole [8].
In that case the covariant acceleration of atoms is equal
to zero, whereas, acceleration of a cavity held fixed in
the Schwarzschild coordinates is nonzero. Thus, there
is relative acceleration between the atoms and the field
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modes (cavity). This leads to the generation of acceler-
ation radiation which to a distant observer looks much
like thermal radiation with Hawking temperature [8].
A symmetry between excitation of a stationary

atom by a mirror accelerating in Minkowski space-time
(Rindler vacuum) and an atom freely falling in gravita-
tional field relatively to a stationary mirror (Boulware
vacuum) is a manifestation of the equivalence principle.
This principle also yields a symmetry between excitation
of an atom accelerating in Minkowski space-time relative
to a stationary mirror (Minkowski vacuum) and a sta-
tionary atom excited by a mirror freely falling in gravi-
tational field (Hartle-Hawking vacuum).
One can test our findings experimentally in schemes

that imitate an accelerating mirror [14, 31] and two-level
atom [32]. E.g., one can use a superconducting transmis-
sion line microwave cavity terminated by a SQUID and
coupled to an ensemble of polar molecules. The SQUID
acts as an inductor whose value can be varied on very
short timescales which provides the same boundary con-
dition as the idealized moving mirror [31]. Unlike the
mirror, the effective acceleration of the boundary a can
be much greater than cν, where ν is the frequency of
microwave photons in the cavity [14].
An ensemble of N ∼ 104 − 106 polar molecules, coher-

ently interacting with the cavity photons, can mimic a
two-level atom. The rotational excitations of molecules
are in the microwave regime and have anharmonic en-
ergy spectrum. The anharmonicity allows us to pick out
a two-level subspace in the rotational spectrum and treat
the molecular ensemble as a two level system. Trapping
molecules close to the transmission line surface allows a
strong electric dipole coupling with the cavity photons
with the effective coupling constant of geff = g

√
N ∼ 10

MHz [32].
Equation (19) yields that in the limit a ≫ cν the prob-

ability of atomic excitation with simultaneous emission
of a photon into a single mode is given by P ∼ 4g2eff/ω

2.
For geff = 10 MHz and ω = 1 GHz we obtain P ∼ 10−4.
If there are many (e.g. 100) cavity modes for which
a ≫ cν then probabilities add up and the “artificial”
atom can get excited with the detectable probability
P ∼ 10−2. Since the interference factor in Eq. (19) is
governed by the atomic frequency ω, the interference will
not be washed out by summation over the field modes
and, hence, spatial oscillations can be observed in this
scheme.
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